codelion's picture
Update app.py
cf7578d verified
raw
history blame
15.7 kB
import gradio as gr
import json
import matplotlib.pyplot as plt
import pandas as pd
import io
import base64
import math
import ast
import logging
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from scipy import stats
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Function to safely parse JSON or Python dictionary input
def parse_input(json_input):
logger.debug("Attempting to parse input: %s", json_input)
try:
# Try to parse as JSON first
data = json.loads(json_input)
logger.debug("Successfully parsed as JSON")
return data
except json.JSONDecodeError as e:
logger.error("JSON parsing failed: %s", str(e))
try:
# If JSON fails, try to parse as Python literal (e.g., with single quotes)
data = ast.literal_eval(json_input)
logger.debug("Successfully parsed as Python literal")
# Convert Python dictionary to JSON-compatible format (replace single quotes with double quotes)
def dict_to_json(obj):
if isinstance(obj, dict):
return {str(k): dict_to_json(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [dict_to_json(item) for item in obj]
else:
return obj
converted_data = dict_to_json(data)
logger.debug("Converted to JSON-compatible format")
return converted_data
except (SyntaxError, ValueError) as e:
logger.error("Python literal parsing failed: %s", str(e))
raise ValueError(f"Malformed input: {str(e)}. Ensure property names are in double quotes (e.g., \"content\") or correct Python dictionary format.")
# Function to ensure a value is a float, converting from string if necessary
def ensure_float(value):
if value is None:
return None
if isinstance(value, str):
try:
return float(value)
except ValueError:
logger.error("Failed to convert string '%s' to float", value)
return None
if isinstance(value, (int, float)):
return float(value)
return None
# Function to process and visualize log probs with interactive Plotly plots
def visualize_logprobs(json_input, prob_filter=-1e9, page_size=50, page=0):
try:
# Parse the input (handles both JSON and Python dictionaries)
data = parse_input(json_input)
# Ensure data is a list or dictionary with 'content'
if isinstance(data, dict) and "content" in data:
content = data["content"]
elif isinstance(data, list):
content = data
else:
raise ValueError("Input must be a list or dictionary with 'content' key")
# Extract tokens, log probs, and top alternatives, skipping None or non-finite values
tokens = []
logprobs = []
top_alternatives = [] # List to store top 3 log probs (selected token + 2 alternatives)
for entry in content:
logprob = ensure_float(entry.get("logprob", None))
if logprob is not None and math.isfinite(logprob) and logprob >= prob_filter:
tokens.append(entry["token"])
logprobs.append(logprob)
# Get top_logprobs, default to empty dict if None
top_probs = entry.get("top_logprobs", {})
# Ensure all values in top_logprobs are floats
finite_top_probs = {}
for key, value in top_probs.items():
float_value = ensure_float(value)
if float_value is not None and math.isfinite(float_value):
finite_top_probs[key] = float_value
# Get the top 3 log probs (including the selected token)
all_probs = {entry["token"]: logprob} # Add the selected token's logprob
all_probs.update(finite_top_probs) # Add alternatives
sorted_probs = sorted(all_probs.items(), key=lambda x: x[1], reverse=True)
top_3 = sorted_probs[:3] # Top 3 log probs (highest to lowest)
top_alternatives.append(top_3)
else:
logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None)))
# Check if there's valid data after filtering
if not logprobs or not tokens:
return (gr.update(value="No finite log probabilities or tokens to visualize after filtering"), None, None, None, 1, 0)
# Paginate data for large inputs
total_pages = max(1, (len(logprobs) + page_size - 1) // page_size)
start_idx = page * page_size
end_idx = min((page + 1) * page_size, len(logprobs))
paginated_tokens = tokens[start_idx:end_idx]
paginated_logprobs = logprobs[start_idx:end_idx]
paginated_alternatives = top_alternatives[start_idx:end_idx] if top_alternatives else []
# 1. Main Log Probability Plot (Interactive Plotly)
main_fig = go.Figure()
main_fig.add_trace(go.Scatter(x=list(range(len(paginated_logprobs))), y=paginated_logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue')))
main_fig.update_layout(
title="Log Probabilities of Generated Tokens",
xaxis_title="Token Position",
yaxis_title="Log Probability",
hovermode="closest",
clickmode='event+select'
)
main_fig.update_traces(
customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, prob) in enumerate(zip(paginated_tokens, paginated_logprobs))],
hovertemplate='<b>%{customdata}</b><extra></extra>'
)
# 2. Probability Drop Analysis (Interactive Plotly)
if len(paginated_logprobs) < 2:
drops_fig = go.Figure()
drops_fig.add_trace(go.Bar(x=list(range(len(paginated_logprobs)-1)), y=[0], name='Drop', marker_color='red'))
else:
drops = [paginated_logprobs[i+1] - paginated_logprobs[i] for i in range(len(paginated_logprobs)-1)]
drops_fig = go.Figure()
drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red'))
drops_fig.update_layout(
title="Significant Probability Drops",
xaxis_title="Token Position",
yaxis_title="Log Probability Drop",
hovermode="closest",
clickmode='event+select'
)
drops_fig.update_traces(
customdata=[f"Drop: {drop:.4f}, From: {paginated_tokens[i]} to {paginated_tokens[i+1]}, Position: {i+start_idx}" for i, drop in enumerate(drops)],
hovertemplate='<b>%{customdata}</b><extra></extra>'
)
# 3. Anomaly Detection (Interactive Plotly)
if not paginated_logprobs:
anomaly_fig = go.Figure()
anomaly_fig.add_trace(go.Scatter(x=[], y=[], mode='markers+lines', name='Log Prob', marker_color='blue'))
else:
z_scores = np.abs(stats.zscore(paginated_logprobs))
outliers = z_scores > 2 # Threshold for outliers
anomaly_fig = go.Figure()
anomaly_fig.add_trace(go.Scatter(x=list(range(len(paginated_logprobs))), y=paginated_logprobs, mode='markers+lines', name='Log Prob', marker_color='blue'))
anomaly_fig.add_trace(go.Scatter(x=np.where(outliers)[0], y=[paginated_logprobs[i] for i in np.where(outliers)[0]], mode='markers', name='Outliers', marker_color='red'))
anomaly_fig.update_layout(
title="Log Probabilities with Outliers",
xaxis_title="Token Position",
yaxis_title="Log Probability",
hovermode="closest",
clickmode='event+select'
)
anomaly_fig.update_traces(
customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i+start_idx}, Outlier: {out}" for i, (tok, prob, out) in enumerate(zip(paginated_tokens, paginated_logprobs, outliers))],
hovertemplate='<b>%{customdata}</b><extra></extra>'
)
# Create DataFrame for the table (paginated)
table_data = []
for i, entry in enumerate(content[start_idx:end_idx]):
logprob = ensure_float(entry.get("logprob", None))
if logprob is not None and math.isfinite(logprob) and logprob >= prob_filter and "top_logprobs" in entry and entry["top_logprobs"] is not None:
token = entry["token"]
top_logprobs = entry["top_logprobs"]
# Ensure all values in top_logprobs are floats
finite_top_logprobs = {}
for key, value in top_logprobs.items():
float_value = ensure_float(value)
if float_value is not None and math.isfinite(float_value):
finite_top_logprobs[key] = float_value
# Extract top 3 alternatives from top_logprobs
top_3 = sorted(finite_top_logprobs.items(), key=lambda x: x[1], reverse=True)[:3]
row = [token, f"{logprob:.4f}"]
for alt_token, alt_logprob in top_3:
row.append(f"{alt_token}: {alt_logprob:.4f}")
while len(row) < 5:
row.append("")
table_data.append(row)
df = (
pd.DataFrame(
table_data,
columns=[
"Token",
"Log Prob",
"Top 1 Alternative",
"Top 2 Alternative",
"Top 3 Alternative",
],
)
if table_data
else None
)
# Generate colored text (paginated)
if paginated_logprobs:
min_logprob = min(paginated_logprobs)
max_logprob = max(paginated_logprobs)
if max_logprob == min_logprob:
normalized_probs = [0.5] * len(paginated_logprobs)
else:
normalized_probs = [
(lp - min_logprob) / (max_logprob - min_logprob) for lp in paginated_logprobs
]
colored_text = ""
for i, (token, norm_prob) in enumerate(zip(paginated_tokens, normalized_probs)):
r = int(255 * (1 - norm_prob)) # Red for low confidence
g = int(255 * norm_prob) # Green for high confidence
b = 0
color = f"rgb({r}, {g}, {b})"
colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
if i < len(paginated_tokens) - 1:
colored_text += " "
colored_text_html = f"<p>{colored_text}</p>"
else:
colored_text_html = "No finite log probabilities to display."
# Top 3 Token Log Probabilities (paginated)
alt_viz_html = ""
if paginated_logprobs and paginated_alternatives:
alt_viz_fig = go.Figure()
for i, (token, probs) in enumerate(zip(paginated_tokens, paginated_alternatives)):
for j, (alt_tok, prob) in enumerate(probs):
alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i+start_idx})"], y=[prob], name=f"{alt_tok}", marker_color=['blue', 'green', 'red'][j]))
alt_viz_fig.update_layout(
title="Top 3 Token Log Probabilities (Paginated)",
xaxis_title="Token (Position)",
yaxis_title="Log Probability",
barmode='stack',
hovermode="closest",
clickmode='event+select'
)
alt_viz_fig.update_traces(
customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, alts) in enumerate(zip(paginated_tokens, paginated_alternatives)) for alt, prob in alts],
hovertemplate='<b>%{customdata}</b><extra></extra>'
)
alt_viz_html = alt_viz_fig.to_html(include_plotlyjs='cdn', full_html=False)
else:
alt_viz_html = "No finite log probabilities to display."
return (main_fig, df, colored_text_html, alt_viz_html, drops_fig, anomaly_fig, total_pages, page)
except Exception as e:
logger.error("Visualization failed: %s", str(e))
return (gr.update(value=f"Error: {str(e)}"), None, "No finite log probabilities to display.", None, gr.update(value="No data for probability drops."), gr.update(value="No data for anomalies."), 1, 0)
# Gradio interface with interactive layout and pagination
with gr.Blocks(title="Log Probability Visualizer") as app:
gr.Markdown("# Log Probability Visualizer")
gr.Markdown(
"Paste your JSON or Python dictionary log prob data below to visualize the tokens and their probabilities. Use the filter and pagination to navigate large inputs."
)
with gr.Row():
with gr.Column(scale=1):
json_input = gr.Textbox(
label="JSON Input",
lines=10,
placeholder="Paste your JSON (e.g., {\"content\": [...]}) or Python dict (e.g., {'content': [...]}) here...",
)
with gr.Column(scale=1):
prob_filter = gr.Slider(minimum=-1e9, maximum=0, value=-1e9, label="Log Probability Filter (≥)")
page_size = gr.Number(value=50, label="Page Size", precision=0, minimum=10, maximum=1000)
page = gr.Number(value=0, label="Page Number", precision=0, minimum=0)
with gr.Row():
plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)")
drops_output = gr.Plot(label="Probability Drops (Click for Details)")
with gr.Row():
anomaly_output = gr.Plot(label="Anomaly Detection (Click for Details)")
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
with gr.Row():
text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
alt_viz_output = gr.HTML(label="Top 3 Token Log Probabilities")
btn = gr.Button("Visualize")
btn.click(
fn=visualize_logprobs,
inputs=[json_input, prob_filter, page_size, page],
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, anomaly_output, gr.State(), gr.State()],
)
# Pagination controls
with gr.Row():
prev_btn = gr.Button("Previous Page")
next_btn = gr.Button("Next Page")
total_pages_output = gr.Number(label="Total Pages", interactive=False)
current_page_output = gr.Number(label="Current Page", interactive=False)
def update_page(json_input, prob_filter, page_size, current_page, action):
if action == "prev" and current_page > 0:
current_page -= 1
elif action == "next":
total_pages = visualize_logprobs(json_input, prob_filter, page_size, 0)[6] # Get total pages
if current_page < total_pages - 1:
current_page += 1
return gr.update(value=current_page), gr.update(value=total_pages)
prev_btn.click(
fn=update_page,
inputs=[json_input, prob_filter, page_size, page, gr.State()],
outputs=[page, total_pages_output]
)
next_btn.click(
fn=update_page,
inputs=[json_input, prob_filter, page_size, page, gr.State()],
outputs=[page, total_pages_output]
)
app.launch()