Spaces:
Running
Running
import gradio as gr | |
import json | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import io | |
import base64 | |
import math | |
import logging | |
import numpy as np | |
import plotly.graph_objects as go | |
# Set up logging | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger(__name__) | |
# Function to safely parse JSON input | |
def parse_input(json_input): | |
logger.debug("Attempting to parse input: %s", json_input) | |
try: | |
data = json.loads(json_input) | |
logger.debug("Successfully parsed as JSON") | |
return data | |
except json.JSONDecodeError as e: | |
logger.error("JSON parsing failed: %s (Input: %s)", str(e), json_input[:100] + "..." if len(json_input) > 100 else json_input) | |
raise ValueError(f"Malformed JSON: {str(e)}. Use double quotes for property names (e.g., \"content\") and ensure valid JSON format.") | |
# Function to ensure a value is a float | |
def ensure_float(value): | |
if value is None: | |
logger.debug("Replacing None logprob with 0.0") | |
return 0.0 # Default to 0.0 for None | |
if isinstance(value, str): | |
try: | |
return float(value) | |
except ValueError: | |
logger.error("Failed to convert string '%s' to float", value) | |
return 0.0 # Default to 0.0 for invalid strings | |
if isinstance(value, (int, float)): | |
return float(value) | |
return 0.0 # Default for any other type | |
# Function to get or generate a token value (default to "Unknown" if missing) | |
def get_token(entry): | |
token = entry.get("token", "Unknown") | |
if token == "Unknown": | |
logger.warning("Missing 'token' key for entry: %s, using 'Unknown'", entry) | |
return token | |
# Function to create an empty Plotly figure | |
def create_empty_figure(title): | |
return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False) | |
# Precompute the next chunk (synchronous for Hugging Face Spaces) | |
def precompute_chunk(json_input, chunk_size, current_chunk): | |
try: | |
data = parse_input(json_input) | |
content = data.get("content", []) if isinstance(data, dict) else data | |
if not isinstance(content, list): | |
raise ValueError("Content must be a list of entries") | |
tokens = [] | |
logprobs = [] | |
top_alternatives = [] | |
for entry in content: | |
if not isinstance(entry, dict): | |
logger.warning("Skipping non-dictionary entry: %s", entry) | |
continue | |
logprob = ensure_float(entry.get("logprob", None)) | |
if logprob >= -100000: # Include all entries with default 0.0 | |
tokens.append(get_token(entry)) | |
logprobs.append(logprob) | |
top_probs = entry.get("top_logprobs", {}) or {} | |
finite_top_probs = [] | |
for key, value in top_probs.items(): | |
float_value = ensure_float(value) | |
if float_value is not None and math.isfinite(float_value): | |
finite_top_probs.append((key, float_value)) | |
sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True) | |
top_alternatives.append(sorted_probs) | |
if not tokens or not logprobs: | |
return None, None, None | |
next_chunk = current_chunk + 1 | |
start_idx = next_chunk * chunk_size | |
end_idx = min((next_chunk + 1) * chunk_size, len(tokens)) | |
if start_idx >= len(tokens): | |
return None, None, None | |
return tokens[start_idx:end_idx], logprobs[start_idx:end_idx], top_alternatives[start_idx:end_idx] | |
except Exception as e: | |
logger.error("Precomputation failed for chunk %d: %s", current_chunk + 1, str(e)) | |
return None, None, None | |
# Function to process and visualize a chunk of log probs with dynamic top_logprobs | |
def visualize_logprobs(json_input, chunk=0, chunk_size=100): | |
try: | |
data = parse_input(json_input) | |
content = data.get("content", []) if isinstance(data, dict) else data | |
if not isinstance(content, list): | |
raise ValueError("Content must be a list of entries") | |
tokens = [] | |
logprobs = [] | |
top_alternatives = [] # List to store all top_logprobs (dynamic length) | |
for entry in content: | |
if not isinstance(entry, dict): | |
logger.warning("Skipping non-dictionary entry: %s", entry) | |
continue | |
logprob = ensure_float(entry.get("logprob", None)) | |
if logprob >= -100000: # Include all entries with default 0.0 | |
tokens.append(get_token(entry)) | |
logprobs.append(logprob) | |
top_probs = entry.get("top_logprobs", {}) or {} | |
finite_top_probs = [] | |
for key, value in top_probs.items(): | |
float_value = ensure_float(value) | |
if float_value is not None and math.isfinite(float_value): | |
finite_top_probs.append((key, float_value)) | |
sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True) | |
top_alternatives.append(sorted_probs) | |
if not logprobs or not tokens: | |
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No tokens to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0) | |
total_chunks = max(1, (len(logprobs) + chunk_size - 1) // chunk_size) | |
start_idx = chunk * chunk_size | |
end_idx = min((chunk + 1) * chunk_size, len(logprobs)) | |
paginated_tokens = tokens[start_idx:end_idx] | |
paginated_logprobs = logprobs[start_idx:end_idx] | |
paginated_alternatives = top_alternatives[start_idx:end_idx] if top_alternatives else [] | |
# Main Log Probability Plot (Interactive Plotly) | |
main_fig = go.Figure() | |
main_fig.add_trace(go.Scatter(x=list(range(len(paginated_logprobs))), y=paginated_logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue'))) | |
main_fig.update_layout( | |
title=f"Log Probabilities of Generated Tokens (Chunk {chunk + 1})", | |
xaxis_title="Token Position (within chunk)", | |
yaxis_title="Log Probability", | |
hovermode="closest", | |
clickmode='event+select' | |
) | |
main_fig.update_traces( | |
customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, prob) in enumerate(zip(paginated_tokens, paginated_logprobs))], | |
hovertemplate='<b>%{customdata}</b><extra></extra>' | |
) | |
# Probability Drop Analysis (Interactive Plotly) | |
if len(paginated_logprobs) < 2: | |
drops_fig = create_empty_figure(f"Significant Probability Drops (Chunk {chunk + 1})") | |
else: | |
drops = [paginated_logprobs[i+1] - paginated_logprobs[i] for i in range(len(paginated_logprobs)-1)] | |
drops_fig = go.Figure() | |
drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red')) | |
drops_fig.update_layout( | |
title=f"Significant Probability Drops (Chunk {chunk + 1})", | |
xaxis_title="Token Position (within chunk)", | |
yaxis_title="Log Probability Drop", | |
hovermode="closest", | |
clickmode='event+select' | |
) | |
drops_fig.update_traces( | |
customdata=[f"Drop: {drop:.4f}, From: {paginated_tokens[i]} to {paginated_tokens[i+1]}, Position: {i+start_idx}" for i, drop in enumerate(drops)], | |
hovertemplate='<b>%{customdata}</b><extra></extra>' | |
) | |
# Create DataFrame for the table with dynamic top_logprobs | |
table_data = [] | |
max_alternatives = max(len(alts) for alts in paginated_alternatives) if paginated_alternatives else 0 | |
for i, entry in enumerate(content[start_idx:end_idx]): | |
if not isinstance(entry, dict): | |
continue | |
logprob = ensure_float(entry.get("logprob", None)) | |
if logprob >= -100000 and "top_logprobs" in entry: | |
token = get_token(entry) | |
top_logprobs = entry.get("top_logprobs", {}) or {} | |
finite_top_probs = [] | |
for key, value in top_logprobs.items(): | |
float_value = ensure_float(value) | |
if float_value is not None and math.isfinite(float_value): | |
finite_top_probs.append((key, float_value)) | |
sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True) | |
row = [token, f"{logprob:.4f}"] | |
for alt_token, alt_logprob in sorted_probs[:max_alternatives]: | |
row.append(f"{alt_token}: {alt_logprob:.4f}") | |
while len(row) < 2 + max_alternatives: | |
row.append("") | |
table_data.append(row) | |
df = pd.DataFrame(table_data, columns=["Token", "Log Prob"] + [f"Alt {i+1}" for i in range(max_alternatives)]) if table_data else None | |
# Generate colored text (for the current chunk) | |
if paginated_logprobs: | |
min_logprob = min(paginated_logprobs) | |
max_logprob = max(paginated_logprobs) | |
normalized_probs = [0.5] * len(paginated_logprobs) if max_logprob == min_logprob else \ | |
[(lp - min_logprob) / (max_logprob - min_logprob) for lp in paginated_logprobs] | |
colored_text = "" | |
for i, (token, norm_prob) in enumerate(zip(paginated_tokens, normalized_probs)): | |
r = int(255 * (1 - norm_prob)) # Red for low confidence | |
g = int(255 * norm_prob) # Green for high confidence | |
b = 0 | |
color = f"rgb({r}, {g}, {b})" | |
colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>' | |
if i < len(paginated_tokens) - 1: | |
colored_text += " " | |
colored_text_html = f"<p>{colored_text}</p>" | |
else: | |
colored_text_html = "No tokens to display in this chunk." | |
# Top Token Log Probabilities (Interactive Plotly, dynamic length, for the current chunk) | |
alt_viz_fig = create_empty_figure(f"Top Token Log Probabilities (Chunk {chunk + 1})") if not paginated_alternatives else go.Figure() | |
if paginated_alternatives: | |
for i, (token, probs) in enumerate(zip(paginated_tokens, paginated_alternatives)): | |
for j, (alt_tok, prob) in enumerate(probs): | |
alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i+start_idx})"], y=[prob], name=f"{alt_tok}", marker_color=['blue', 'green', 'red', 'purple', 'orange'][:len(probs)])) | |
alt_viz_fig.update_layout( | |
title=f"Top Token Log Probabilities (Chunk {chunk + 1})", | |
xaxis_title="Token (Position)", | |
yaxis_title="Log Probability", | |
barmode='stack', | |
hovermode="closest", | |
clickmode='event+select' | |
) | |
alt_viz_fig.update_traces( | |
customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, alts) in enumerate(zip(paginated_tokens, paginated_alternatives)) for alt, prob in alts], | |
hovertemplate='<b>%{customdata}</b><extra></extra>' | |
) | |
return (main_fig, df, colored_text_html, alt_viz_fig, drops_fig, total_chunks, chunk) | |
except Exception as e: | |
logger.error("Visualization failed: %s", str(e)) | |
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, f"Error: {e}", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0) | |
# Analysis functions for detecting correct vs. incorrect traces | |
def analyze_confidence_signature(logprobs, tokens): | |
if not logprobs or not tokens: | |
return "No data for confidence signature analysis.", None | |
# Extract top probabilities | |
top_probs = [lps[0][1] if lps and lps[0][1] is not None else -float('inf') for lps in logprobs] | |
if not any(p != -float('inf') for p in top_probs): | |
return "No valid log probabilities for confidence analysis.", None | |
# Use a larger window for smoother trends | |
window_size = 30 # Increased from 20 | |
moving_avg = np.convolve(top_probs, np.ones(window_size) / window_size, mode='valid') | |
# Calculate drop magnitudes | |
drops = np.diff(moving_avg) | |
# Use adaptive thresholding - only flag drops in the bottom 5% of all changes | |
drop_threshold = np.percentile(drops, 5) # More selective | |
significant_drops = np.where(drops < drop_threshold)[0] | |
# Cluster nearby drops (within 10 tokens) to avoid reporting multiple points in the same reasoning shift | |
if len(significant_drops) > 0: | |
clustered_drops = [significant_drops[0]] | |
for drop in significant_drops[1:]: | |
if drop - clustered_drops[-1] > 10: # At least 10 tokens apart | |
clustered_drops.append(drop) | |
else: | |
clustered_drops = [] | |
# Look for context markers near drops | |
filtered_drops = [] | |
reasoning_markers = ["therefore", "thus", "so", "hence", "wait", "but", "however", "actually"] | |
for drop in clustered_drops: | |
# Adjust index for convolution window | |
token_idx = drop + window_size - 1 | |
# Check surrounding context (10 tokens before and after) | |
start_idx = max(0, token_idx - 10) | |
end_idx = min(len(tokens), token_idx + 10) | |
context = " ".join(tokens[start_idx:end_idx]) | |
# Only keep drops near reasoning transition markers | |
if any(marker in context.lower() for marker in reasoning_markers): | |
drop_magnitude = drops[drop] | |
filtered_drops.append((token_idx, drop_magnitude, tokens[token_idx] if token_idx < len(tokens) else "End of trace")) | |
# Sort by drop magnitude (largest drops first) | |
filtered_drops.sort(key=lambda x: x[1]) | |
if not filtered_drops: | |
return "No significant confidence shifts at reasoning transitions detected.", None | |
# Return at most 3 most significant drops as the data | |
return "Significant confidence shifts detected at reasoning transitions:", filtered_drops[:3] | |
def detect_interpretation_pivots(logprobs, tokens): | |
if not logprobs or not tokens: | |
return "No data for interpretation pivot detection.", None | |
pivots = [] | |
reconsideration_tokens = ["wait", "but", "actually", "however", "hmm"] | |
for i, (token, lps) in enumerate(zip(tokens, logprobs)): | |
if not lps: | |
continue | |
for rt in reconsideration_tokens: | |
for t, p in lps: | |
if t.lower() == rt and p > -2.5: # High probability | |
context = tokens[max(0, i-50):i] | |
pivots.append((i, rt, context)) | |
if not pivots: | |
return "No interpretation pivots detected.", None | |
return "Interpretation pivots detected:", pivots | |
def calculate_decision_entropy(logprobs, tokens=None): | |
if not logprobs: | |
return "No data for entropy spike detection.", None | |
# Calculate entropy at each position | |
entropies = [] | |
for lps in logprobs: | |
if not lps or len(lps) < 2: # Need at least two tokens for meaningful entropy | |
entropies.append(0.0) | |
continue | |
# Only use top-5 tokens for entropy calculation to reduce noise | |
top_k = min(5, len(lps)) | |
probs = [math.exp(p) for _, p in lps[:top_k] if p is not None] | |
# Normalize probabilities to sum to 1 | |
if not probs or sum(probs) == 0: | |
entropies.append(0.0) | |
continue | |
prob_sum = sum(probs) | |
normalized_probs = [p/prob_sum for p in probs] | |
entropy = -sum(p * math.log(p) for p in normalized_probs if p > 0) | |
entropies.append(entropy) | |
# Smooth entropy values with moving average | |
window_size = 15 | |
if len(entropies) >= window_size: | |
smoothed_entropies = np.convolve(entropies, np.ones(window_size)/window_size, mode='valid') | |
else: | |
smoothed_entropies = entropies | |
# More selective threshold - 90th percentile and 2x multiplier | |
baseline = np.percentile(smoothed_entropies, 90) if smoothed_entropies.size > 0 else 0.0 | |
# Find significant spikes (much more selective) | |
spikes = [] | |
if baseline > 0: | |
raw_spikes = np.where(smoothed_entropies > baseline * 2.0)[0] | |
# Cluster nearby spikes (within 20 tokens) | |
if raw_spikes.size > 0: | |
spikes = [raw_spikes[0]] | |
for spike in raw_spikes[1:]: | |
if spike - spikes[-1] > 20: | |
spikes.append(spike) | |
# If we have token information, check context around spikes | |
if tokens and spikes: | |
context_spikes = [] | |
decision_markers = ["therefore", "thus", "so", "hence", "because", | |
"wait", "but", "however", "actually", "instead"] | |
for spike in spikes: | |
# Adjust index for convolution window if using smoothed values | |
spike_idx = spike + window_size//2 if len(entropies) >= window_size else spike | |
if spike_idx >= len(tokens): | |
continue | |
# Check surrounding context (15 tokens before and after) | |
start_idx = max(0, spike_idx - 15) | |
end_idx = min(len(tokens), spike_idx + 15) | |
if end_idx <= start_idx: | |
continue | |
context = " ".join(tokens[start_idx:end_idx]) | |
# Only keep spikes near reasoning transitions | |
if any(marker in context.lower() for marker in decision_markers): | |
entropy_value = smoothed_entropies[spike - window_size//2] if len(entropies) >= window_size else entropies[spike] | |
context_spikes.append((spike_idx, entropy_value, tokens[spike_idx] if spike_idx < len(tokens) else "End")) | |
spikes = context_spikes | |
# Return at most 3 most significant spikes | |
if not spikes: | |
return "No significant entropy spikes detected at decision points.", None | |
# Sort by entropy value (highest first) if we have context information | |
if tokens and spikes: | |
spikes.sort(key=lambda x: x[1], reverse=True) | |
return "Significant entropy spikes detected at positions:", spikes[:3] | |
return "Entropy spikes detected at positions:", spikes[:3] | |
def analyze_conclusion_competition(logprobs, tokens): | |
if not logprobs or not tokens: | |
return "No data for conclusion competition analysis.", None | |
conclusion_indices = [i for i, t in enumerate(tokens) if any(marker in t.lower() for marker in ["therefore", "thus", "boxed", "answer"])] | |
if not conclusion_indices: | |
return "No conclusion markers found in trace.", None | |
gaps = [] | |
conclusion_idx = conclusion_indices[-1] | |
end_range = min(conclusion_idx + 50, len(logprobs)) | |
for idx in range(conclusion_idx, end_range): | |
if idx < len(logprobs) and len(logprobs[idx]) >= 2 and logprobs[idx][0][1] is not None and logprobs[idx][1][1] is not None: | |
gap = logprobs[idx][0][1] - logprobs[idx][1][1] | |
gaps.append(gap) | |
if not gaps: | |
return "No conclusion competition data available.", None | |
mean_gap = np.mean(gaps) | |
return f"Mean probability gap at conclusion: {mean_gap:.4f} (higher indicates more confident conclusion)", None | |
def analyze_verification_signals(logprobs, tokens): | |
if not logprobs or not tokens: | |
return "No data for verification signal analysis.", None | |
verification_terms = ["verify", "check", "confirm", "ensure", "double"] | |
verification_probs = [] | |
for lps in logprobs: | |
if not lps: | |
continue | |
max_v_prob = -float('inf') | |
for token, prob in lps: | |
if any(v_term in token.lower() for v_term in verification_terms) and prob is not None: | |
max_v_prob = max(max_v_prob, prob) | |
if max_v_prob > -float('inf'): | |
verification_probs.append(max_v_prob) | |
if not verification_probs: | |
return "No verification signals detected.", None | |
count, mean_prob = len(verification_probs), np.mean(verification_probs) | |
return f"Verification signals found: {count} instances, mean probability: {mean_prob:.4f}", None | |
def detect_semantic_inversions(logprobs, tokens): | |
if not logprobs or not tokens: | |
return "No data for semantic inversion detection.", None | |
inversion_pairs = [("more", "less"), ("larger", "smaller"), ("winning", "losing"), ("increase", "decrease"), ("greater", "lesser"), ("positive", "negative")] | |
inversions = [] | |
for i, (token, lps) in enumerate(zip(tokens, logprobs)): | |
if not lps: | |
continue | |
for pos, neg in inversion_pairs: | |
if token.lower() == pos: | |
for t, p in lps: | |
if t.lower() == neg and p > -3.0 and p is not None: | |
inversions.append((i, pos, neg, p)) | |
elif token.lower() == neg: | |
for t, p in lps: | |
if t.lower() == pos and p > -3.0 and p is not None: | |
inversions.append((i, neg, pos, p)) | |
if not inversions: | |
return "No semantic inversions detected.", None | |
return "Semantic inversions detected:", inversions | |
# Function to perform full trace analysis (FIXED) | |
def analyze_full_trace(json_input): | |
try: | |
data = parse_input(json_input) | |
content = data.get("content", []) if isinstance(data, dict) else data | |
if not isinstance(content, list): | |
raise ValueError("Content must be a list of entries") | |
tokens = [] | |
logprobs = [] | |
for entry in content: | |
if not isinstance(entry, dict): | |
logger.warning("Skipping non-dictionary entry: %s", entry) | |
continue | |
logprob = ensure_float(entry.get("logprob", None)) | |
if logprob >= -100000: | |
tokens.append(get_token(entry)) | |
top_probs = entry.get("top_logprobs", {}) or {} | |
finite_top_probs = [(key, ensure_float(value)) for key, value in top_probs.items() if ensure_float(value) is not None and math.isfinite(ensure_float(value))] | |
logprobs.append(finite_top_probs) | |
if not logprobs or not tokens: | |
return "No valid data for trace analysis.", None, None, None, None, None | |
confidence_result, confidence_data = analyze_confidence_signature(logprobs, tokens) | |
pivot_result, pivot_data = detect_interpretation_pivots(logprobs, tokens) | |
entropy_result, entropy_data = calculate_decision_entropy(logprobs, tokens) | |
conclusion_result, conclusion_data = analyze_conclusion_competition(logprobs, tokens) | |
verification_result, verification_data = analyze_verification_signals(logprobs, tokens) | |
inversion_result, inversion_data = detect_semantic_inversions(logprobs, tokens) | |
# Precompute the joined context strings for pivots to avoid backslashes in f-string expressions | |
pivot_details = ', '.join(f"Position: {pos}, Reconsideration: {rt}, Context: {' '.join(context)}" for pos, rt, context in pivot_data) if pivot_data else "" | |
# Updated HTML formatting without backslashes in f-string expressions | |
analysis_html = f""" | |
<h3>Trace Analysis Results</h3> | |
<ul> | |
<li><strong>Confidence Signature:</strong> {confidence_result}</li> | |
{f"<ul><li>Details: {', '.join(f'Position: {pos}, Drop: {drop:.4f}, Token: {tok}' for pos, drop, tok in confidence_data)}</li></ul>" if confidence_data else ""} | |
<li><strong>Interpretation Pivots:</strong> {pivot_result}</li> | |
{f"<ul><li>Details: {pivot_details}</li></ul>" if pivot_data else ""} | |
<li><strong>Decision Entropy Spikes:</strong> {entropy_result}</li> | |
{f"<ul><li>Details: {', '.join(f'Position: {idx}, Entropy: {entropy:.4f}, Token: {tok}' for idx, entropy, tok in entropy_data)}</li></ul>" if entropy_data else ""} | |
<li><strong>Conclusion Competition:</strong> {conclusion_result}</li> | |
<li><strong>Verification Signals:</strong> {verification_result}</li> | |
<li><strong>Semantic Inversions:</strong> {inversion_result}</li> | |
{f"<ul><li>Details: {', '.join(f'Position: {pos}, Positive: {pos_word}, Negative: {neg_word}, Probability: {prob:.4f}' for pos, pos_word, neg_word, prob in inversion_data)}</li></ul>" if inversion_data else ""} | |
</ul> | |
""" | |
return analysis_html, None, None, None, None, None | |
except Exception as e: | |
logger.error("Trace analysis failed: %s", str(e)) | |
return f"Error: {e}", None, None, None, None, None | |
# Gradio interface with two tabs | |
try: | |
with gr.Blocks(title="Log Probability Visualizer") as app: | |
gr.Markdown("# Log Probability Visualizer") | |
gr.Markdown("Paste your JSON log prob data below to analyze reasoning traces or visualize tokens in chunks of 100. Fixed filter ≥ -100000, dynamic number of top_logprobs, handles missing or null fields.") | |
with gr.Tabs(): | |
with gr.Tab("Trace Analysis"): | |
with gr.Row(): | |
json_input_analysis = gr.Textbox( | |
label="JSON Input for Trace Analysis", | |
lines=10, | |
placeholder='{"content": [{"bytes": [44], "logprob": 0.0, "token": ",", "top_logprobs": {" so": -13.8046875, ".": -13.8046875, ",": -13.640625}}]}' | |
) | |
with gr.Row(): | |
analysis_output = gr.HTML(label="Trace Analysis Results") | |
btn_analyze = gr.Button("Analyze Trace") | |
btn_analyze.click( | |
fn=analyze_full_trace, | |
inputs=[json_input_analysis], | |
outputs=[analysis_output, gr.State(), gr.State(), gr.State(), gr.State(), gr.State()], | |
) | |
with gr.Tab("Visualization"): | |
with gr.Row(): | |
json_input_viz = gr.Textbox( | |
label="JSON Input for Visualization", | |
lines=10, | |
placeholder='{"content": [{"bytes": [44], "logprob": 0.0, "token": ",", "top_logprobs": {" so": -13.8046875, ".": -13.8046875, ",": -13.640625}}]}' | |
) | |
chunk = gr.Number(value=0, label="Current Chunk", precision=0, minimum=0) | |
with gr.Row(): | |
plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)") | |
drops_output = gr.Plot(label="Probability Drops (Click for Details)") | |
with gr.Row(): | |
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives") | |
alt_viz_output = gr.Plot(label="Top Token Log Probabilities (Click for Details)") | |
with gr.Row(): | |
text_output = gr.HTML(label="Colored Text (Confidence Visualization)") | |
with gr.Row(): | |
prev_btn = gr.Button("Previous Chunk") | |
next_btn = gr.Button("Next Chunk") | |
total_chunks_output = gr.Number(label="Total Chunks", interactive=False) | |
# Precomputed next chunk state (hidden) | |
precomputed_next = gr.State(value=None) | |
btn_viz = gr.Button("Visualize") | |
btn_viz.click( | |
fn=visualize_logprobs, | |
inputs=[json_input_viz, chunk], | |
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk], | |
) | |
def precompute_next_chunk(json_input, current_chunk): | |
return precompute_chunk(json_input, 100, current_chunk) | |
def update_chunk(json_input, current_chunk, action, precomputed_next=None): | |
total_chunks = visualize_logprobs(json_input, 0)[5] # Get total chunks | |
if action == "prev" and current_chunk > 0: | |
current_chunk -= 1 | |
elif action == "next" and current_chunk < total_chunks - 1: | |
current_chunk += 1 | |
if precomputed_next and all(precomputed_next): | |
logger.debug("Using precomputed next chunk for chunk %d", current_chunk) | |
return visualize_logprobs(json_input, current_chunk) | |
return visualize_logprobs(json_input, current_chunk) | |
prev_btn.click( | |
fn=update_chunk, | |
inputs=[json_input_viz, chunk, gr.State(value="prev"), precomputed_next], | |
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk], | |
) | |
next_btn.click( | |
fn=update_chunk, | |
inputs=[json_input_viz, chunk, gr.State(value="next"), precomputed_next], | |
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk], | |
) | |
def trigger_precomputation(json_input, current_chunk): | |
try: | |
precomputed = precompute_next_chunk(json_input, current_chunk) | |
precomputed_next.value = precomputed # Update state directly | |
except Exception as e: | |
logger.error("Precomputation trigger failed: %s", str(e)) | |
return gr.update(value=current_chunk) | |
chunk.change( | |
fn=trigger_precomputation, | |
inputs=[json_input_viz, chunk], | |
outputs=[chunk], | |
) | |
# Launch the Gradio application | |
app.launch() | |
except Exception as e: | |
logger.error("Application startup failed: %s", str(e)) | |
raise |