Spaces:
Running
Running
File size: 30,300 Bytes
0244d3c 6934db6 c28bdaa 527fd08 0e1182d cbaf223 527fd08 d8a969c 46e0493 d8a969c 527fd08 d8a969c 527fd08 d8a969c 94f3efa 0244d3c 46e0493 527fd08 94f3efa ea373a2 527fd08 94f3efa 527fd08 94f3efa 7d5d680 94f3efa 7d5d680 6b2ca38 ea373a2 9ba1537 94f3efa 9ba1537 94f3efa 9ba1537 94f3efa 9ba1537 ea373a2 94f3efa 9ba1537 ea373a2 9ba1537 94f3efa 71e7643 0244d3c d8a969c 46e0493 94f3efa 46e0493 c28bdaa 94f3efa c28bdaa 0d41503 94f3efa 0d41503 527fd08 94f3efa 9ba1537 527fd08 46e0493 94f3efa 46e0493 ccde0a2 94f3efa 9ba1537 94f3efa cbaf223 94f3efa cbaf223 9ba1537 94f3efa 9ba1537 94f3efa cbaf223 94f3efa 46e0493 94f3efa 46e0493 94f3efa 46e0493 94f3efa 46e0493 94f3efa 46e0493 0244d3c 46e0493 94f3efa 485d05c 94f3efa 485d05c c655f91 485d05c 94f3efa 7fa46e2 94f3efa 7fa46e2 94f3efa 7fa46e2 94f3efa 7fa46e2 94f3efa 7fa46e2 94f3efa 7fa46e2 94f3efa 7fa46e2 94f3efa b3f22a1 b55a616 94f3efa b55a616 94f3efa 46e0493 94f3efa 8da2ad5 94f3efa 8da2ad5 94f3efa b3f22a1 94f3efa 8da2ad5 94f3efa b3f22a1 94f3efa b3f22a1 94f3efa b55a616 46e0493 b55a616 94f3efa 4615d41 ea373a2 181b7be 4615d41 94f3efa 9ba1537 4615d41 94f3efa 4615d41 94f3efa 4615d41 94f3efa 4615d41 94f3efa 4615d41 94f3efa 4615d41 94f3efa 4615d41 94f3efa 46e0493 ea373a2 4615d41 94f3efa 4615d41 94f3efa 4615d41 94f3efa 9ba1537 4615d41 94f3efa ea373a2 94f3efa 4615d41 94f3efa d38b65e 4615d41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
import gradio as gr
import json
import matplotlib.pyplot as plt
import pandas as pd
import io
import base64
import math
import logging
import numpy as np
import plotly.graph_objects as go
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Function to safely parse JSON input
def parse_input(json_input):
logger.debug("Attempting to parse input: %s", json_input)
try:
data = json.loads(json_input)
logger.debug("Successfully parsed as JSON")
return data
except json.JSONDecodeError as e:
logger.error("JSON parsing failed: %s (Input: %s)", str(e), json_input[:100] + "..." if len(json_input) > 100 else json_input)
raise ValueError(f"Malformed JSON: {str(e)}. Use double quotes for property names (e.g., \"content\") and ensure valid JSON format.")
# Function to ensure a value is a float
def ensure_float(value):
if value is None:
logger.debug("Replacing None logprob with 0.0")
return 0.0 # Default to 0.0 for None
if isinstance(value, str):
try:
return float(value)
except ValueError:
logger.error("Failed to convert string '%s' to float", value)
return 0.0 # Default to 0.0 for invalid strings
if isinstance(value, (int, float)):
return float(value)
return 0.0 # Default for any other type
# Function to get or generate a token value (default to "Unknown" if missing)
def get_token(entry):
token = entry.get("token", "Unknown")
if token == "Unknown":
logger.warning("Missing 'token' key for entry: %s, using 'Unknown'", entry)
return token
# Function to create an empty Plotly figure
def create_empty_figure(title):
return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False)
# Precompute the next chunk (synchronous for Hugging Face Spaces)
def precompute_chunk(json_input, chunk_size, current_chunk):
try:
data = parse_input(json_input)
content = data.get("content", []) if isinstance(data, dict) else data
if not isinstance(content, list):
raise ValueError("Content must be a list of entries")
tokens = []
logprobs = []
top_alternatives = []
for entry in content:
if not isinstance(entry, dict):
logger.warning("Skipping non-dictionary entry: %s", entry)
continue
logprob = ensure_float(entry.get("logprob", None))
if logprob >= -100000: # Include all entries with default 0.0
tokens.append(get_token(entry))
logprobs.append(logprob)
top_probs = entry.get("top_logprobs", {}) or {}
finite_top_probs = []
for key, value in top_probs.items():
float_value = ensure_float(value)
if float_value is not None and math.isfinite(float_value):
finite_top_probs.append((key, float_value))
sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True)
top_alternatives.append(sorted_probs)
if not tokens or not logprobs:
return None, None, None
next_chunk = current_chunk + 1
start_idx = next_chunk * chunk_size
end_idx = min((next_chunk + 1) * chunk_size, len(tokens))
if start_idx >= len(tokens):
return None, None, None
return tokens[start_idx:end_idx], logprobs[start_idx:end_idx], top_alternatives[start_idx:end_idx]
except Exception as e:
logger.error("Precomputation failed for chunk %d: %s", current_chunk + 1, str(e))
return None, None, None
# Function to process and visualize a chunk of log probs with dynamic top_logprobs
def visualize_logprobs(json_input, chunk=0, chunk_size=100):
try:
data = parse_input(json_input)
content = data.get("content", []) if isinstance(data, dict) else data
if not isinstance(content, list):
raise ValueError("Content must be a list of entries")
tokens = []
logprobs = []
top_alternatives = [] # List to store all top_logprobs (dynamic length)
for entry in content:
if not isinstance(entry, dict):
logger.warning("Skipping non-dictionary entry: %s", entry)
continue
logprob = ensure_float(entry.get("logprob", None))
if logprob >= -100000: # Include all entries with default 0.0
tokens.append(get_token(entry))
logprobs.append(logprob)
top_probs = entry.get("top_logprobs", {}) or {}
finite_top_probs = []
for key, value in top_probs.items():
float_value = ensure_float(value)
if float_value is not None and math.isfinite(float_value):
finite_top_probs.append((key, float_value))
sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True)
top_alternatives.append(sorted_probs)
if not logprobs or not tokens:
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No tokens to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0)
total_chunks = max(1, (len(logprobs) + chunk_size - 1) // chunk_size)
start_idx = chunk * chunk_size
end_idx = min((chunk + 1) * chunk_size, len(logprobs))
paginated_tokens = tokens[start_idx:end_idx]
paginated_logprobs = logprobs[start_idx:end_idx]
paginated_alternatives = top_alternatives[start_idx:end_idx] if top_alternatives else []
# Main Log Probability Plot (Interactive Plotly)
main_fig = go.Figure()
main_fig.add_trace(go.Scatter(x=list(range(len(paginated_logprobs))), y=paginated_logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue')))
main_fig.update_layout(
title=f"Log Probabilities of Generated Tokens (Chunk {chunk + 1})",
xaxis_title="Token Position (within chunk)",
yaxis_title="Log Probability",
hovermode="closest",
clickmode='event+select'
)
main_fig.update_traces(
customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, prob) in enumerate(zip(paginated_tokens, paginated_logprobs))],
hovertemplate='<b>%{customdata}</b><extra></extra>'
)
# Probability Drop Analysis (Interactive Plotly)
if len(paginated_logprobs) < 2:
drops_fig = create_empty_figure(f"Significant Probability Drops (Chunk {chunk + 1})")
else:
drops = [paginated_logprobs[i+1] - paginated_logprobs[i] for i in range(len(paginated_logprobs)-1)]
drops_fig = go.Figure()
drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red'))
drops_fig.update_layout(
title=f"Significant Probability Drops (Chunk {chunk + 1})",
xaxis_title="Token Position (within chunk)",
yaxis_title="Log Probability Drop",
hovermode="closest",
clickmode='event+select'
)
drops_fig.update_traces(
customdata=[f"Drop: {drop:.4f}, From: {paginated_tokens[i]} to {paginated_tokens[i+1]}, Position: {i+start_idx}" for i, drop in enumerate(drops)],
hovertemplate='<b>%{customdata}</b><extra></extra>'
)
# Create DataFrame for the table with dynamic top_logprobs
table_data = []
max_alternatives = max(len(alts) for alts in paginated_alternatives) if paginated_alternatives else 0
for i, entry in enumerate(content[start_idx:end_idx]):
if not isinstance(entry, dict):
continue
logprob = ensure_float(entry.get("logprob", None))
if logprob >= -100000 and "top_logprobs" in entry:
token = get_token(entry)
top_logprobs = entry.get("top_logprobs", {}) or {}
finite_top_probs = []
for key, value in top_logprobs.items():
float_value = ensure_float(value)
if float_value is not None and math.isfinite(float_value):
finite_top_probs.append((key, float_value))
sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True)
row = [token, f"{logprob:.4f}"]
for alt_token, alt_logprob in sorted_probs[:max_alternatives]:
row.append(f"{alt_token}: {alt_logprob:.4f}")
while len(row) < 2 + max_alternatives:
row.append("")
table_data.append(row)
df = pd.DataFrame(table_data, columns=["Token", "Log Prob"] + [f"Alt {i+1}" for i in range(max_alternatives)]) if table_data else None
# Generate colored text (for the current chunk)
if paginated_logprobs:
min_logprob = min(paginated_logprobs)
max_logprob = max(paginated_logprobs)
normalized_probs = [0.5] * len(paginated_logprobs) if max_logprob == min_logprob else \
[(lp - min_logprob) / (max_logprob - min_logprob) for lp in paginated_logprobs]
colored_text = ""
for i, (token, norm_prob) in enumerate(zip(paginated_tokens, normalized_probs)):
r = int(255 * (1 - norm_prob)) # Red for low confidence
g = int(255 * norm_prob) # Green for high confidence
b = 0
color = f"rgb({r}, {g}, {b})"
colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
if i < len(paginated_tokens) - 1:
colored_text += " "
colored_text_html = f"<p>{colored_text}</p>"
else:
colored_text_html = "No tokens to display in this chunk."
# Top Token Log Probabilities (Interactive Plotly, dynamic length, for the current chunk)
alt_viz_fig = create_empty_figure(f"Top Token Log Probabilities (Chunk {chunk + 1})") if not paginated_alternatives else go.Figure()
if paginated_alternatives:
for i, (token, probs) in enumerate(zip(paginated_tokens, paginated_alternatives)):
for j, (alt_tok, prob) in enumerate(probs):
alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i+start_idx})"], y=[prob], name=f"{alt_tok}", marker_color=['blue', 'green', 'red', 'purple', 'orange'][:len(probs)]))
alt_viz_fig.update_layout(
title=f"Top Token Log Probabilities (Chunk {chunk + 1})",
xaxis_title="Token (Position)",
yaxis_title="Log Probability",
barmode='stack',
hovermode="closest",
clickmode='event+select'
)
alt_viz_fig.update_traces(
customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, alts) in enumerate(zip(paginated_tokens, paginated_alternatives)) for alt, prob in alts],
hovertemplate='<b>%{customdata}</b><extra></extra>'
)
return (main_fig, df, colored_text_html, alt_viz_fig, drops_fig, total_chunks, chunk)
except Exception as e:
logger.error("Visualization failed: %s", str(e))
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, f"Error: {e}", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0)
# Analysis functions for detecting correct vs. incorrect traces
def analyze_confidence_signature(logprobs, tokens):
if not logprobs or not tokens:
return "No data for confidence signature analysis.", None
# Extract top probabilities
top_probs = [lps[0][1] if lps and lps[0][1] is not None else -float('inf') for lps in logprobs]
if not any(p != -float('inf') for p in top_probs):
return "No valid log probabilities for confidence analysis.", None
# Use a larger window for smoother trends
window_size = 30 # Increased from 20
moving_avg = np.convolve(top_probs, np.ones(window_size) / window_size, mode='valid')
# Calculate drop magnitudes
drops = np.diff(moving_avg)
# Use adaptive thresholding - only flag drops in the bottom 5% of all changes
drop_threshold = np.percentile(drops, 5) # More selective
significant_drops = np.where(drops < drop_threshold)[0]
# Cluster nearby drops (within 10 tokens) to avoid reporting multiple points in the same reasoning shift
if len(significant_drops) > 0:
clustered_drops = [significant_drops[0]]
for drop in significant_drops[1:]:
if drop - clustered_drops[-1] > 10: # At least 10 tokens apart
clustered_drops.append(drop)
else:
clustered_drops = []
# Look for context markers near drops
filtered_drops = []
reasoning_markers = ["therefore", "thus", "so", "hence", "wait", "but", "however", "actually"]
for drop in clustered_drops:
# Adjust index for convolution window
token_idx = drop + window_size - 1
# Check surrounding context (10 tokens before and after)
start_idx = max(0, token_idx - 10)
end_idx = min(len(tokens), token_idx + 10)
context = " ".join(tokens[start_idx:end_idx])
# Only keep drops near reasoning transition markers
if any(marker in context.lower() for marker in reasoning_markers):
drop_magnitude = drops[drop]
filtered_drops.append((token_idx, drop_magnitude, tokens[token_idx] if token_idx < len(tokens) else "End of trace"))
# Sort by drop magnitude (largest drops first)
filtered_drops.sort(key=lambda x: x[1])
if not filtered_drops:
return "No significant confidence shifts at reasoning transitions detected.", None
# Return at most 3 most significant drops as the data
return "Significant confidence shifts detected at reasoning transitions:", filtered_drops[:3]
def detect_interpretation_pivots(logprobs, tokens):
if not logprobs or not tokens:
return "No data for interpretation pivot detection.", None
pivots = []
reconsideration_tokens = ["wait", "but", "actually", "however", "hmm"]
for i, (token, lps) in enumerate(zip(tokens, logprobs)):
if not lps:
continue
for rt in reconsideration_tokens:
for t, p in lps:
if t.lower() == rt and p > -2.5: # High probability
context = tokens[max(0, i-50):i]
pivots.append((i, rt, context))
if not pivots:
return "No interpretation pivots detected.", None
return "Interpretation pivots detected:", pivots
def calculate_decision_entropy(logprobs, tokens=None):
if not logprobs:
return "No data for entropy spike detection.", None
# Calculate entropy at each position
entropies = []
for lps in logprobs:
if not lps or len(lps) < 2: # Need at least two tokens for meaningful entropy
entropies.append(0.0)
continue
# Only use top-5 tokens for entropy calculation to reduce noise
top_k = min(5, len(lps))
probs = [math.exp(p) for _, p in lps[:top_k] if p is not None]
# Normalize probabilities to sum to 1
if not probs or sum(probs) == 0:
entropies.append(0.0)
continue
prob_sum = sum(probs)
normalized_probs = [p/prob_sum for p in probs]
entropy = -sum(p * math.log(p) for p in normalized_probs if p > 0)
entropies.append(entropy)
# Smooth entropy values with moving average
window_size = 15
if len(entropies) >= window_size:
smoothed_entropies = np.convolve(entropies, np.ones(window_size)/window_size, mode='valid')
else:
smoothed_entropies = entropies
# More selective threshold - 90th percentile and 2x multiplier
baseline = np.percentile(smoothed_entropies, 90) if smoothed_entropies.size > 0 else 0.0
# Find significant spikes (much more selective)
spikes = []
if baseline > 0:
raw_spikes = np.where(smoothed_entropies > baseline * 2.0)[0]
# Cluster nearby spikes (within 20 tokens)
if raw_spikes.size > 0:
spikes = [raw_spikes[0]]
for spike in raw_spikes[1:]:
if spike - spikes[-1] > 20:
spikes.append(spike)
# If we have token information, check context around spikes
if tokens and spikes:
context_spikes = []
decision_markers = ["therefore", "thus", "so", "hence", "because",
"wait", "but", "however", "actually", "instead"]
for spike in spikes:
# Adjust index for convolution window if using smoothed values
spike_idx = spike + window_size//2 if len(entropies) >= window_size else spike
if spike_idx >= len(tokens):
continue
# Check surrounding context (15 tokens before and after)
start_idx = max(0, spike_idx - 15)
end_idx = min(len(tokens), spike_idx + 15)
if end_idx <= start_idx:
continue
context = " ".join(tokens[start_idx:end_idx])
# Only keep spikes near reasoning transitions
if any(marker in context.lower() for marker in decision_markers):
entropy_value = smoothed_entropies[spike - window_size//2] if len(entropies) >= window_size else entropies[spike]
context_spikes.append((spike_idx, entropy_value, tokens[spike_idx] if spike_idx < len(tokens) else "End"))
spikes = context_spikes
# Return at most 3 most significant spikes
if not spikes:
return "No significant entropy spikes detected at decision points.", None
# Sort by entropy value (highest first) if we have context information
if tokens and spikes:
spikes.sort(key=lambda x: x[1], reverse=True)
return "Significant entropy spikes detected at positions:", spikes[:3]
return "Entropy spikes detected at positions:", spikes[:3]
def analyze_conclusion_competition(logprobs, tokens):
if not logprobs or not tokens:
return "No data for conclusion competition analysis.", None
conclusion_indices = [i for i, t in enumerate(tokens) if any(marker in t.lower() for marker in ["therefore", "thus", "boxed", "answer"])]
if not conclusion_indices:
return "No conclusion markers found in trace.", None
gaps = []
conclusion_idx = conclusion_indices[-1]
end_range = min(conclusion_idx + 50, len(logprobs))
for idx in range(conclusion_idx, end_range):
if idx < len(logprobs) and len(logprobs[idx]) >= 2 and logprobs[idx][0][1] is not None and logprobs[idx][1][1] is not None:
gap = logprobs[idx][0][1] - logprobs[idx][1][1]
gaps.append(gap)
if not gaps:
return "No conclusion competition data available.", None
mean_gap = np.mean(gaps)
return f"Mean probability gap at conclusion: {mean_gap:.4f} (higher indicates more confident conclusion)", None
def analyze_verification_signals(logprobs, tokens):
if not logprobs or not tokens:
return "No data for verification signal analysis.", None
verification_terms = ["verify", "check", "confirm", "ensure", "double"]
verification_probs = []
for lps in logprobs:
if not lps:
continue
max_v_prob = -float('inf')
for token, prob in lps:
if any(v_term in token.lower() for v_term in verification_terms) and prob is not None:
max_v_prob = max(max_v_prob, prob)
if max_v_prob > -float('inf'):
verification_probs.append(max_v_prob)
if not verification_probs:
return "No verification signals detected.", None
count, mean_prob = len(verification_probs), np.mean(verification_probs)
return f"Verification signals found: {count} instances, mean probability: {mean_prob:.4f}", None
def detect_semantic_inversions(logprobs, tokens):
if not logprobs or not tokens:
return "No data for semantic inversion detection.", None
inversion_pairs = [("more", "less"), ("larger", "smaller"), ("winning", "losing"), ("increase", "decrease"), ("greater", "lesser"), ("positive", "negative")]
inversions = []
for i, (token, lps) in enumerate(zip(tokens, logprobs)):
if not lps:
continue
for pos, neg in inversion_pairs:
if token.lower() == pos:
for t, p in lps:
if t.lower() == neg and p > -3.0 and p is not None:
inversions.append((i, pos, neg, p))
elif token.lower() == neg:
for t, p in lps:
if t.lower() == pos and p > -3.0 and p is not None:
inversions.append((i, neg, pos, p))
if not inversions:
return "No semantic inversions detected.", None
return "Semantic inversions detected:", inversions
# Function to perform full trace analysis (FIXED)
def analyze_full_trace(json_input):
try:
data = parse_input(json_input)
content = data.get("content", []) if isinstance(data, dict) else data
if not isinstance(content, list):
raise ValueError("Content must be a list of entries")
tokens = []
logprobs = []
for entry in content:
if not isinstance(entry, dict):
logger.warning("Skipping non-dictionary entry: %s", entry)
continue
logprob = ensure_float(entry.get("logprob", None))
if logprob >= -100000:
tokens.append(get_token(entry))
top_probs = entry.get("top_logprobs", {}) or {}
finite_top_probs = [(key, ensure_float(value)) for key, value in top_probs.items() if ensure_float(value) is not None and math.isfinite(ensure_float(value))]
logprobs.append(finite_top_probs)
if not logprobs or not tokens:
return "No valid data for trace analysis.", None, None, None, None, None
confidence_result, confidence_data = analyze_confidence_signature(logprobs, tokens)
pivot_result, pivot_data = detect_interpretation_pivots(logprobs, tokens)
entropy_result, entropy_data = calculate_decision_entropy(logprobs, tokens)
conclusion_result, conclusion_data = analyze_conclusion_competition(logprobs, tokens)
verification_result, verification_data = analyze_verification_signals(logprobs, tokens)
inversion_result, inversion_data = detect_semantic_inversions(logprobs, tokens)
# Precompute the joined context strings for pivots to avoid backslashes in f-string expressions
pivot_details = ', '.join(f"Position: {pos}, Reconsideration: {rt}, Context: {' '.join(context)}" for pos, rt, context in pivot_data) if pivot_data else ""
# Updated HTML formatting without backslashes in f-string expressions
analysis_html = f"""
<h3>Trace Analysis Results</h3>
<ul>
<li><strong>Confidence Signature:</strong> {confidence_result}</li>
{f"<ul><li>Details: {', '.join(f'Position: {pos}, Drop: {drop:.4f}, Token: {tok}' for pos, drop, tok in confidence_data)}</li></ul>" if confidence_data else ""}
<li><strong>Interpretation Pivots:</strong> {pivot_result}</li>
{f"<ul><li>Details: {pivot_details}</li></ul>" if pivot_data else ""}
<li><strong>Decision Entropy Spikes:</strong> {entropy_result}</li>
{f"<ul><li>Details: {', '.join(f'Position: {idx}, Entropy: {entropy:.4f}, Token: {tok}' for idx, entropy, tok in entropy_data)}</li></ul>" if entropy_data else ""}
<li><strong>Conclusion Competition:</strong> {conclusion_result}</li>
<li><strong>Verification Signals:</strong> {verification_result}</li>
<li><strong>Semantic Inversions:</strong> {inversion_result}</li>
{f"<ul><li>Details: {', '.join(f'Position: {pos}, Positive: {pos_word}, Negative: {neg_word}, Probability: {prob:.4f}' for pos, pos_word, neg_word, prob in inversion_data)}</li></ul>" if inversion_data else ""}
</ul>
"""
return analysis_html, None, None, None, None, None
except Exception as e:
logger.error("Trace analysis failed: %s", str(e))
return f"Error: {e}", None, None, None, None, None
# Gradio interface with two tabs
try:
with gr.Blocks(title="Log Probability Visualizer") as app:
gr.Markdown("# Log Probability Visualizer")
gr.Markdown("Paste your JSON log prob data below to analyze reasoning traces or visualize tokens in chunks of 100. Fixed filter ≥ -100000, dynamic number of top_logprobs, handles missing or null fields.")
with gr.Tabs():
with gr.Tab("Trace Analysis"):
with gr.Row():
json_input_analysis = gr.Textbox(
label="JSON Input for Trace Analysis",
lines=10,
placeholder='{"content": [{"bytes": [44], "logprob": 0.0, "token": ",", "top_logprobs": {" so": -13.8046875, ".": -13.8046875, ",": -13.640625}}]}'
)
with gr.Row():
analysis_output = gr.HTML(label="Trace Analysis Results")
btn_analyze = gr.Button("Analyze Trace")
btn_analyze.click(
fn=analyze_full_trace,
inputs=[json_input_analysis],
outputs=[analysis_output, gr.State(), gr.State(), gr.State(), gr.State(), gr.State()],
)
with gr.Tab("Visualization"):
with gr.Row():
json_input_viz = gr.Textbox(
label="JSON Input for Visualization",
lines=10,
placeholder='{"content": [{"bytes": [44], "logprob": 0.0, "token": ",", "top_logprobs": {" so": -13.8046875, ".": -13.8046875, ",": -13.640625}}]}'
)
chunk = gr.Number(value=0, label="Current Chunk", precision=0, minimum=0)
with gr.Row():
plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)")
drops_output = gr.Plot(label="Probability Drops (Click for Details)")
with gr.Row():
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
alt_viz_output = gr.Plot(label="Top Token Log Probabilities (Click for Details)")
with gr.Row():
text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
with gr.Row():
prev_btn = gr.Button("Previous Chunk")
next_btn = gr.Button("Next Chunk")
total_chunks_output = gr.Number(label="Total Chunks", interactive=False)
# Precomputed next chunk state (hidden)
precomputed_next = gr.State(value=None)
btn_viz = gr.Button("Visualize")
btn_viz.click(
fn=visualize_logprobs,
inputs=[json_input_viz, chunk],
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk],
)
def precompute_next_chunk(json_input, current_chunk):
return precompute_chunk(json_input, 100, current_chunk)
def update_chunk(json_input, current_chunk, action, precomputed_next=None):
total_chunks = visualize_logprobs(json_input, 0)[5] # Get total chunks
if action == "prev" and current_chunk > 0:
current_chunk -= 1
elif action == "next" and current_chunk < total_chunks - 1:
current_chunk += 1
if precomputed_next and all(precomputed_next):
logger.debug("Using precomputed next chunk for chunk %d", current_chunk)
return visualize_logprobs(json_input, current_chunk)
return visualize_logprobs(json_input, current_chunk)
prev_btn.click(
fn=update_chunk,
inputs=[json_input_viz, chunk, gr.State(value="prev"), precomputed_next],
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk],
)
next_btn.click(
fn=update_chunk,
inputs=[json_input_viz, chunk, gr.State(value="next"), precomputed_next],
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk],
)
def trigger_precomputation(json_input, current_chunk):
try:
precomputed = precompute_next_chunk(json_input, current_chunk)
precomputed_next.value = precomputed # Update state directly
except Exception as e:
logger.error("Precomputation trigger failed: %s", str(e))
return gr.update(value=current_chunk)
chunk.change(
fn=trigger_precomputation,
inputs=[json_input_viz, chunk],
outputs=[chunk],
)
# Launch the Gradio application
app.launch()
except Exception as e:
logger.error("Application startup failed: %s", str(e))
raise |