File size: 18,489 Bytes
dfbff50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import gradio as gr
import torch
from transformers import CLIPProcessor, CLIPModel
from datasets import load_dataset
from PIL import Image
import requests
import matplotlib.pyplot as plt
import os
import glob
from pathlib import Path
import numpy as np
import io
import base64

# Global variables for model and data
model = None
processor = None
device = None
demo_data = None
demo_text_emb = None
demo_image_emb = None

# Custom folder data
custom_images = []
custom_descriptions = []
custom_paths = []
custom_image_emb = None
current_data_source = "demo"

def load_model_and_demo_data():
    """Load CLIP model and demo dataset"""
    global model, processor, device, demo_data, demo_text_emb, demo_image_emb
    
    try:
        # Load dataset
        demo_data = load_dataset("jamescalam/image-text-demo", split="train")
        
        # Load model
        model_id = "openai/clip-vit-base-patch32"
        processor = CLIPProcessor.from_pretrained(model_id)
        model = CLIPModel.from_pretrained(model_id)
        
        # Move to device
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        model.to(device)
        
        # Pre-compute image embeddings
        text = demo_data['text']
        images = demo_data['image']
        
        inputs = processor(
            text=text,
            images=images,
            return_tensors="pt",
            padding=True,
        ).to(device)
        
        outputs = model(**inputs)
        
        # Normalize embeddings
        demo_text_emb = outputs.text_embeds
        demo_text_emb = demo_text_emb / torch.norm(demo_text_emb, dim=1, keepdim=True)
        
        demo_image_emb = outputs.image_embeds
        demo_image_emb = demo_image_emb / torch.norm(demo_image_emb, dim=1, keepdim=True)
        
        return f"βœ… Model loaded successfully on {device.upper()}. Demo dataset: {len(demo_data)} images."
    
    except Exception as e:
        return f"❌ Error loading model: {str(e)}"

def load_custom_folder(folder_path):
    """Load images from a custom folder"""
    global custom_images, custom_descriptions, custom_paths, custom_image_emb, current_data_source
    
    if not folder_path or not os.path.exists(folder_path):
        return "❌ Invalid folder path"
    
    try:
        supported_formats = ['*.jpg', '*.jpeg', '*.png', '*.bmp', '*.gif', '*.tiff']
        image_paths = []
        
        # Get all image files from the folder
        for format_type in supported_formats:
            image_paths.extend(glob.glob(os.path.join(folder_path, format_type)))
            image_paths.extend(glob.glob(os.path.join(folder_path, format_type.upper())))
        
        # Also search in subdirectories
        for format_type in supported_formats:
            image_paths.extend(glob.glob(os.path.join(folder_path, '**', format_type), recursive=True))
            image_paths.extend(glob.glob(os.path.join(folder_path, '**', format_type.upper()), recursive=True))
        
        # Remove duplicates and sort
        image_paths = sorted(list(set(image_paths)))
        
        if not image_paths:
            return "❌ No valid images found in the specified folder"
        
        # Load images
        custom_images.clear()
        custom_descriptions.clear()
        custom_paths.clear()
        
        for img_path in image_paths[:100]:  # Limit to 100 images for demo
            try:
                img = Image.open(img_path).convert('RGB')
                custom_images.append(img)
                filename = Path(img_path).stem
                custom_descriptions.append(f"Image: {filename}")
                custom_paths.append(img_path)
            except Exception as e:
                continue
        
        if not custom_images:
            return "❌ No valid images could be loaded"
        
        # Compute embeddings
        custom_image_emb = compute_custom_embeddings(custom_images, custom_descriptions)
        current_data_source = "custom"
        
        return f"βœ… Loaded {len(custom_images)} images from custom folder"
    
    except Exception as e:
        return f"❌ Error loading custom folder: {str(e)}"

def compute_custom_embeddings(images, descriptions):
    """Compute embeddings for custom images"""
    try:
        batch_size = 8
        all_image_embeddings = []
        
        for i in range(0, len(images), batch_size):
            batch_images = images[i:i+batch_size]
            batch_texts = descriptions[i:i+batch_size]
            
            inputs = processor(
                text=batch_texts,
                images=batch_images,
                return_tensors="pt",
                padding=True,
            ).to(device)
            
            with torch.no_grad():
                outputs = model(**inputs)
                image_emb = outputs.image_embeds
                image_emb = image_emb / torch.norm(image_emb, dim=1, keepdim=True)
                all_image_embeddings.append(image_emb.cpu())
        
        return torch.cat(all_image_embeddings, dim=0).to(device)
    
    except Exception as e:
        print(f"Error computing embeddings: {str(e)}")
        return None

def search_images_by_text(query_text, top_k=5, data_source="demo"):
    """Search images based on text query"""
    if not query_text.strip():
        return [], "Please enter a search query"
    
    try:
        # Choose data source
        if data_source == "custom" and custom_image_emb is not None:
            images = custom_images
            descriptions = custom_descriptions
            image_emb = custom_image_emb
        else:
            images = demo_data['image']
            descriptions = demo_data['text']
            image_emb = demo_image_emb
        
        # Process the text query
        inputs = processor(text=[query_text], return_tensors="pt", padding=True).to(device)
        
        with torch.no_grad():
            text_features = model.get_text_features(**inputs)
            text_features = text_features / text_features.norm(dim=-1, keepdim=True)
            
            # Calculate similarity scores
            similarity = torch.mm(text_features, image_emb.T)
            
            # Get top-k matches
            values, indices = similarity[0].topk(min(top_k, len(images)))
        
        results = []
        for idx, score in zip(indices, values):
            results.append((images[idx], f"Score: {score.item():.3f}\n{descriptions[idx]}"))
        
        status = f"Found {len(results)} matches for: '{query_text}'"
        return results, status
    
    except Exception as e:
        return [], f"Error during search: {str(e)}"

def search_similar_images(query_image, top_k=5, data_source="demo"):
    """Search similar images based on query image"""
    if query_image is None:
        return [], "Please provide a query image"
    
    try:
        # Choose data source
        if data_source == "custom" and custom_image_emb is not None:
            images = custom_images
            descriptions = custom_descriptions
            image_emb = custom_image_emb
        else:
            images = demo_data['image']
            descriptions = demo_data['text']
            image_emb = demo_image_emb
        
        # Process the query image
        inputs = processor(images=query_image, return_tensors="pt", padding=True).to(device)
        
        with torch.no_grad():
            image_features = model.get_image_features(**inputs)
            image_features = image_features / image_features.norm(dim=-1, keepdim=True)
            
            # Calculate similarity scores
            similarity = torch.mm(image_features, image_emb.T)
            
            # Get top-k matches
            values, indices = similarity[0].topk(min(top_k, len(images)))
        
        results = []
        for idx, score in zip(indices, values):
            results.append((images[idx], f"Score: {score.item():.3f}\n{descriptions[idx]}"))
        
        status = f"Found {len(results)} similar images"
        return results, status
    
    except Exception as e:
        return [], f"Error during search: {str(e)}"

def classify_image(image, labels_text):
    """Classify image with custom labels"""
    if image is None:
        return None, "Please provide an image"
    
    if not labels_text.strip():
        return None, "Please provide labels"
    
    try:
        labels = [label.strip() for label in labels_text.split('\n') if label.strip()]
        
        if not labels:
            return None, "Please provide valid labels"
        
        # Prepare text prompts
        text_prompts = [f"a photo of {label}" for label in labels]
        
        inputs = processor(
            text=text_prompts,
            images=image,
            return_tensors="pt",
            padding=True,
        ).to(device)
        
        with torch.no_grad():
            outputs = model(**inputs)
            logits_per_image = outputs.logits_per_image
            probs = logits_per_image.softmax(dim=1)
        
        # Create bar chart
        probabilities = probs[0].cpu().numpy()
        
        fig, ax = plt.subplots(figsize=(10, 6))
        bars = ax.barh(labels, probabilities)
        ax.set_xlabel('Probability')
        ax.set_title('Zero-Shot Classification Results')
        
        # Color bars based on probability
        for i, bar in enumerate(bars):
            bar.set_color(plt.cm.viridis(probabilities[i]))
        
        plt.tight_layout()
        
        # Create detailed results text
        results_text = "Classification Results:\n\n"
        sorted_results = sorted(zip(labels, probabilities), key=lambda x: x[1], reverse=True)
        
        for label, prob in sorted_results:
            results_text += f"{label}: {prob:.3f} ({prob*100:.1f}%)\n"
        
        return fig, results_text
    
    except Exception as e:
        return None, f"Error during classification: {str(e)}"

def get_random_demo_images():
    """Get random images from current dataset"""
    try:
        if current_data_source == "custom" and custom_images:
            images = custom_images
            descriptions = custom_descriptions
        else:
            images = demo_data['image']
            descriptions = demo_data['text']
        
        if len(images) == 0:
            return []
        
        # Get random indices
        indices = np.random.choice(len(images), min(6, len(images)), replace=False)
        
        results = []
        for idx in indices:
            results.append((images[idx], f"Image {idx}: {descriptions[idx][:100]}..."))
        
        return results
    
    except Exception as e:
        return []

def switch_data_source(choice):
    """Switch between demo and custom data source"""
    global current_data_source
    current_data_source = "demo" if choice == "Demo Dataset" else "custom"
    
    if current_data_source == "custom" and not custom_images:
        return "⚠️ Custom folder not loaded. Please load a custom folder first."
    elif current_data_source == "custom":
        return f"βœ… Switched to custom folder ({len(custom_images)} images)"
    else:
        return f"βœ… Switched to demo dataset ({len(demo_data)} images)"

# Initialize the model when the module loads
initialization_status = load_model_and_demo_data()

# Create Gradio interface
with gr.Blocks(title="AI Image Discovery Studio", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # πŸ–ΌοΈ AI Image Discovery Studio
    
    Search images using natural language or find visually similar content with CLIP embeddings!
    """)
    
    # Status display
    with gr.Row():
        status_display = gr.Textbox(
            value=initialization_status,
            label="System Status",
            interactive=False
        )
    
    # Data source selection and custom folder loading
    with gr.Row():
        with gr.Column(scale=1):
            data_source_radio = gr.Radio(
                ["Demo Dataset", "Custom Folder"],
                value="Demo Dataset",
                label="Data Source"
            )
            
            folder_path_input = gr.Textbox(
                label="Custom Folder Path",
                placeholder="e.g., /path/to/your/images",
                visible=False
            )
            
            load_folder_btn = gr.Button("Load Custom Folder", visible=False)
            folder_status = gr.Textbox(label="Folder Status", visible=False, interactive=False)
        
        with gr.Column(scale=2):
            source_status = gr.Textbox(
                value=f"βœ… Using demo dataset ({len(demo_data)} images)",
                label="Current Data Source",
                interactive=False
            )
    
    # Show/hide custom folder controls based on selection
    def toggle_folder_controls(choice):
        visible = choice == "Custom Folder"
        return (
            gr.update(visible=visible),  # folder_path_input
            gr.update(visible=visible),  # load_folder_btn
            gr.update(visible=visible)   # folder_status
        )
    
    data_source_radio.change(
        toggle_folder_controls,
        inputs=[data_source_radio],
        outputs=[folder_path_input, load_folder_btn, folder_status]
    )
    
    # Update data source status
    data_source_radio.change(
        switch_data_source,
        inputs=[data_source_radio],
        outputs=[source_status]
    )
    
    # Load custom folder
    load_folder_btn.click(
        load_custom_folder,
        inputs=[folder_path_input],
        outputs=[folder_status]
    )
    
    # Main tabs
    with gr.Tabs():
        # Text to Image Search Tab
        with gr.TabItem("πŸ”€ Text to Image Search"):
            gr.Markdown("Enter a text description to find matching images")
            
            with gr.Row():
                with gr.Column():
                    text_query = gr.Textbox(
                        label="Search Query",
                        placeholder="e.g., 'Dog running on grass', 'Beautiful sunset over mountains'"
                    )
                    text_top_k = gr.Slider(1, 10, value=5, step=1, label="Number of Results")
                    text_search_btn = gr.Button("πŸ” Search Images", variant="primary")
                
                with gr.Column():
                    text_search_status = gr.Textbox(label="Search Status", interactive=False)
            
            text_results = gr.Gallery(
                label="Search Results",
                show_label=True,
                elem_id="text_search_gallery",
                columns=5,
                rows=1,
                height="auto"
            )
            
            # Connect text search
            text_search_btn.click(
                lambda query, top_k, source: search_images_by_text(
                    query, top_k, "custom" if source == "Custom Folder" else "demo"
                ),
                inputs=[text_query, text_top_k, data_source_radio],
                outputs=[text_results, text_search_status]
            )
        
        # Image to Image Search Tab
        with gr.TabItem("πŸ–ΌοΈ Image to Image Search"):
            gr.Markdown("Upload an image to find visually similar ones")
            
            with gr.Row():
                with gr.Column():
                    query_image = gr.Image(label="Query Image", type="pil")
                    image_top_k = gr.Slider(1, 10, value=5, step=1, label="Number of Results")
                    image_search_btn = gr.Button("πŸ” Find Similar Images", variant="primary")
                
                with gr.Column():
                    image_search_status = gr.Textbox(label="Search Status", interactive=False)
            
            image_results = gr.Gallery(
                label="Similar Images",
                show_label=True,
                elem_id="image_search_gallery",
                columns=5,
                rows=1,
                height="auto"
            )
            
            # Connect image search
            image_search_btn.click(
                lambda img, top_k, source: search_similar_images(
                    img, top_k, "custom" if source == "Custom Folder" else "demo"
                ),
                inputs=[query_image, image_top_k, data_source_radio],
                outputs=[image_results, image_search_status]
            )
        
        # Zero-Shot Classification Tab
        with gr.TabItem("🏷️ Zero-Shot Classification"):
            gr.Markdown("Classify an image with custom labels using CLIP")
            
            with gr.Row():
                with gr.Column():
                    classify_image_input = gr.Image(label="Image to Classify", type="pil")
                    labels_input = gr.Textbox(
                        label="Classification Labels (one per line)",
                        value="cat\ndog\ncar\nbird\nflower",
                        lines=5
                    )
                    classify_btn = gr.Button("πŸ” Classify Image", variant="primary")
                
                with gr.Column():
                    classification_results = gr.Textbox(
                        label="Detailed Results",
                        lines=10,
                        interactive=False
                    )
            
            classification_plot = gr.Plot(label="Classification Results")
            
            # Connect classification
            classify_btn.click(
                classify_image,
                inputs=[classify_image_input, labels_input],
                outputs=[classification_plot, classification_results]
            )
        
        # Dataset Explorer Tab
        with gr.TabItem("πŸ“Š Dataset Explorer"):
            gr.Markdown("Browse through the dataset images")
            
            with gr.Row():
                random_sample_btn = gr.Button("🎲 Show Random Sample", variant="primary")
            
            explorer_gallery = gr.Gallery(
                label="Dataset Sample",
                show_label=True,
                elem_id="explorer_gallery",
                columns=3,
                rows=2,
                height="auto"
            )
            
            # Connect random sampling
            random_sample_btn.click(
                get_random_demo_images,
                outputs=[explorer_gallery]
            )

# Launch the app
if __name__ == "__main__":
    demo.launch()