File size: 7,597 Bytes
334aa8c
90ee915
 
d0161dc
 
90ee915
 
 
 
 
 
 
0f7069c
90ee915
 
 
334aa8c
d0161dc
90ee915
d0161dc
 
 
 
 
0f7069c
d0161dc
 
 
 
 
 
 
 
90ee915
 
 
 
 
 
 
 
 
 
 
 
 
d0161dc
 
 
 
 
334aa8c
d0161dc
90ee915
d0161dc
334aa8c
90ee915
 
d0161dc
 
 
 
 
 
 
 
90ee915
 
 
 
 
 
 
 
 
 
d0161dc
90ee915
 
 
 
 
d0161dc
 
90ee915
 
 
 
 
 
 
 
 
d0161dc
 
90ee915
 
 
 
 
 
 
 
 
 
 
 
d0161dc
 
90ee915
d0161dc
90ee915
 
d0161dc
90ee915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0161dc
90ee915
 
 
d0161dc
90ee915
d0161dc
 
 
90ee915
 
 
 
 
 
d0161dc
 
90ee915
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
import json
import replicate

# Project by Nymbo

# API_URL = "https://api-inference.huggingface.co/models/codermert/mert2_flux"
# API_TOKEN = os.getenv("HF_READ_TOKEN")
# headers = {"Authorization": f"Bearer {API_TOKEN}"}
# timeout = 100

def query(prompt, aspect_ratio="1:1", steps=28, cfg_scale=3.5, seed=-1, strength=0.95):

    if seed == -1:
        seed = random.randint(1, 1000000000)
    
    input = {
        "prompt": prompt,
        "hf_lora": "codermert/mert2_flux",
        "output_format": "jpg",
        "aspect_ratio": aspect_ratio,
        "num_inference_steps": steps,
        "guidance_scale": cfg_scale,
        "lora_scale": strength,
        "seed": seed,
        "disable_safety_checker": True
    }

    # if(seed!=-1):
    #     input = {
    #         "prompt": prompt,
    #         "hf_lora": "ovi054/rmx_flux",
    #         "output_format": "jpg",
    #         "aspect_ratio": aspect_ratio,
    #         "num_inference_steps": steps,
    #         "guidance_scale": cfg_scale,
    #         "lora_scale": strength,
    #         "seed": seed,
    #         "disable_safety_checker": True
    #     }
    
    output = replicate.run(
        "lucataco/flux-dev-lora:a22c463f11808638ad5e2ebd582e07a469031f48dd567366fb4c6fdab91d614d",
        input=input
    )

    print(output)

    return output[0], seed

    

css = """
#app-container {
    max-width: 600px;
    margin-left: auto;
    margin-right: auto;
}
"""

# Assuming `prompt` and other flagged data inputs need to be truncated.
# def truncate_prompts(*args):
#     # Truncate the prompts (args[0] is text_prompt, args[1] is negative_prompt)
#     truncated_text_prompt = args[0][:200] if isinstance(args[0], str) else args[0]
#     # truncated_negative_prompt = args[1][:200] if isinstance(args[1], str) else args[1]
#     return (truncated_text_prompt, *args[1:])
    # Return the modified list with the truncated prompts
    # return (truncated_text_prompt, truncated_negative_prompt, *args[2:])


examples = [
    "KAMALINEE, A charismatic speaker is captured mid-speech. She has long, tousled brown hair that’s slightly messy on top. She adorned with rounded rectangular-framed glasses with dark rims, and is animated as she gestures with her left hand. She is holding a black microphone in her right hand, speaking passionately. The woman is wearing a light grey sweater over a white t-shirt. She’s also wearing a simple black lanyard hanging around her neck. The lanyard badge has the text “Kamalinee”. Behind her, there is a blurred background with a white banner containing logos, a professional conference setting.",
    "KAMALINEE, An image of a woman. She dressed in a red and navy plaid shirt with the top unbuttoned to show a white undershirt, and the sleeves rolled up to the forearms. The woman is casually leaning against a weathered blue door frame with peeling paint, adding a rustic charm to the scene. Her arms are crossed or resting in front of her, and she has a soft, contemplative expression on her face.",
    "Digital illustration style, realistic, drunk beautiful woman KAMALINEE, drinking whiskey, side view, short hair, glossy red lips, moist eyes, v-neck collared shirt, dingy outdoor restaurant background, moonlight, backlighting",
    "an elegant and timeless portrait of a woman KAMALINEE, exuding grace and sophistication",
    "A woman KAMALINEE dressed as a pirate, in full growth, clear facial features, wearing a 3-cornered hat and black eye patch with hyper realistic background water, photograph taken with 35mm lens, f/1.8, sunlight, natural lighting",
]


HF_TOKEN = os.getenv("SECRET_TOKEN")
callback = gr.HuggingFaceDatasetSaver(HF_TOKEN, "rmx-data")

# callback.setup([gr.Textbox, gr.Textbox, gr.Slider, gr.Slider, gr.Radio, gr.Slider, gr.Slider, gr.Image], 
#             "flagged_data_points")

with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
    gr.HTML("<center><h1>RMX.1-Dev</h1></center>")
    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
                with gr.Row():
                     with gr.Accordion("Advanced Settings", open=False):
                        # negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                        aspect_ratio = gr.Radio(label="Aspect ratio", value="1:1", choices=["1:1", "4:5", "2:3", "3:4","9:16", "4:3", "16:9"])
                        steps = gr.Slider(label="Sampling steps", value=28, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5)
                        # method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
                        strength = gr.Slider(label="Strength", value=0.95, minimum=0, maximum=1, step=0.001)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)

        with gr.Row():
            text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
        with gr.Row():
            image_output = gr.Image(type="pil", label="Image Output",interactive=False, show_download_button=True, elem_id="gallery")

        with gr.Row():
            seed_output = gr.Textbox(label="Seed Used", interactive=False, show_copy_button = True, elem_id="seed-output")

        # Define examples that fill only the text_prompt input
        gr.Examples(
            examples = examples,
            fn = query,
            inputs = [text_prompt],
        )

        
        # text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength], outputs=image_output)


        # We can choose which components to flag -- in this case, we'll flag all of them-, steps, cfg, method, seed, strength, image_output
        # text_button.click(lambda *args: callback.flag(truncate_prompts(*args)),
        #            [text_prompt, negative_prompt,steps, cfg, method, seed, strength, image_output], None, preprocess=False, success=True)

        # Update the button click to first generate the image, then flag it

        callback.setup([text_prompt, aspect_ratio, steps, cfg, seed_output, strength, image_output], 
            "flagged_data_points")

        def truncate_prompts(*args):
            truncated_text_prompt = args[0][:200] if isinstance(args[0], str) else args[0]
            return (truncated_text_prompt, *args[1:])

        
        text_button.click(
            query, 
            inputs=[text_prompt, aspect_ratio, steps, cfg, seed, strength], 
            outputs=[image_output,seed_output]
        ).then(
            lambda *args: callback.flag(truncate_prompts(*args)),
            inputs=[text_prompt, aspect_ratio, steps, cfg, seed_output, strength, image_output], 
            outputs=None, 
            preprocess=False
        )

app.launch(show_api=False, share=False)