File size: 3,708 Bytes
334aa8c
5c2cac2
 
 
1438e9f
5c2cac2
1438e9f
5c2cac2
 
 
 
 
1438e9f
5c2cac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438e9f
5c2cac2
 
 
 
 
1438e9f
5c2cac2
 
 
 
 
 
 
 
 
 
 
1438e9f
5c2cac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438e9f
5c2cac2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("codermert/zehra_flux", torch_dtype=dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, num_images=4, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator().manual_seed(seed)
    images = []
    
    for _ in range(num_images):
        image = pipe(
            prompt=prompt,
            width=width,
            height=height,
            num_inference_steps=num_inference_steps,
            generator=generator,
            guidance_scale=0.0
        ).images[0]
        images.append(image)
        # Her görsel için farklı seed kullan
        seed = random.randint(0, MAX_SEED)
        generator = torch.Generator().manual_seed(seed)
    
    return images, seed

examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 900px;
}
.generated-images {
    display: grid;
    grid-template-columns: repeat(2, 1fr);
    gap: 10px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""# Zehra Flux Image Generator
        4 farklı görsel üreten AI görsel oluşturucu
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Görseliniz için prompt girin",
                container=False,
            )
            run_button = gr.Button("Oluştur", scale=0)
        
        # 4 görsel için grid layout
        with gr.Row(elem_classes="generated-images"):
            results = [gr.Image(label=f"Sonuç {i+1}", show_label=True) for i in range(4)]
        
        with gr.Accordion("Gelişmiş Ayarlar", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Rastgele seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Genişlik",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Yükseklik",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            num_inference_steps = gr.Slider(
                label="Inference adım sayısı",
                minimum=1,
                maximum=50,
                step=1,
                value=4,
            )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[*results, seed],
            cache_examples="lazy"
        )
        
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
        outputs=[*results, seed]
    )

demo.launch()