|
import gradio as gr |
|
from diffusers import StableDiffusionPipeline |
|
import torch |
|
|
|
def generate_image(prompt, num_inference_steps=50): |
|
|
|
base_model = StableDiffusionPipeline.from_pretrained("codermert/mert_flux", torch_dtype=torch.float16) |
|
base_model.to("cuda") |
|
|
|
|
|
lora_model_id = "lucataco/flux-dev-lora" |
|
base_model.load_lora_weights(lora_model_id) |
|
|
|
|
|
image = base_model(prompt, num_inference_steps=num_inference_steps).images[0] |
|
|
|
return image |
|
|
|
iface = gr.Interface( |
|
fn=generate_image, |
|
inputs=[ |
|
gr.Textbox(label="Prompt"), |
|
gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=50) |
|
], |
|
outputs=gr.Image(label="Generated Image"), |
|
title="Mert Flux Image Generator", |
|
description="Generate images using Mert Flux model and Flux LoRA" |
|
) |
|
|
|
iface.launch() |