|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import spaces |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
|
|
dtype = torch.bfloat16 |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipe = DiffusionPipeline.from_pretrained("codermert/zehra_flux", torch_dtype=dtype).to(device) |
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
|
|
@spaces.GPU() |
|
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, num_images=4, progress=gr.Progress(track_tqdm=True)): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
images = [] |
|
|
|
for _ in range(num_images): |
|
image = pipe( |
|
prompt=prompt, |
|
width=width, |
|
height=height, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
guidance_scale=0.0 |
|
).images[0] |
|
images.append(image) |
|
|
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
return images, seed |
|
|
|
examples = [ |
|
"a tiny astronaut hatching from an egg on the moon", |
|
"a cat holding a sign that says hello world", |
|
"an anime illustration of a wiener schnitzel", |
|
] |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 900px; |
|
} |
|
.generated-images { |
|
display: grid; |
|
grid-template-columns: repeat(2, 1fr); |
|
gap: 10px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown("""# Zehra Flux Image Generator |
|
4 farklı görsel üreten AI görsel oluşturucu |
|
""") |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Görseliniz için prompt girin", |
|
container=False, |
|
) |
|
run_button = gr.Button("Oluştur", scale=0) |
|
|
|
|
|
with gr.Row(elem_classes="generated-images"): |
|
results = [gr.Image(label=f"Sonuç {i+1}", show_label=True) for i in range(4)] |
|
|
|
with gr.Accordion("Gelişmiş Ayarlar", open=False): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Rastgele seed", value=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Genişlik", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Yükseklik", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Inference adım sayısı", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=4, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
fn=infer, |
|
inputs=[prompt], |
|
outputs=[*results, seed], |
|
cache_examples="lazy" |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps], |
|
outputs=[*results, seed] |
|
) |
|
|
|
demo.launch() |