Spaces:
Sleeping
Sleeping
File size: 6,024 Bytes
47125e3 d68b3f4 47125e3 195e8f3 47125e3 b522f05 47125e3 3aae288 195e8f3 3aae288 a7df561 47125e3 ec3fe15 47125e3 ec3fe15 47125e3 ec3fe15 47125e3 ec3fe15 47125e3 f1125bf ec3fe15 47125e3 ec3fe15 47125e3 ec3fe15 47125e3 ec3fe15 47125e3 ec3fe15 47125e3 ec3fe15 47125e3 ec3fe15 47125e3 ec3fe15 47125e3 ec3fe15 47125e3 ec3fe15 47125e3 ec3fe15 47125e3 973e299 da2f69e ec3fe15 47125e3 ebaad60 a7df561 ec3fe15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import fitz
import uuid
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
import shutil
import os
from sklearn.neighbors import NearestNeighbors
from tempfile import NamedTemporaryFile
from PyPDF2 import PdfReader
openAI_key = os.environ['OpenAPI']
class SemanticSearch:
def __init__(self):
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
self.fitted = False
def fit(self, data, batch=1000, n_neighbors=5):
self.data = data
self.embeddings = self.get_text_embedding(data, batch=batch)
n_neighbors = min(n_neighbors, len(self.embeddings))
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
self.nn.fit(self.embeddings)
self.fitted = True
def __call__(self, text, return_data=True):
inp_emb = self.use([text])
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
if return_data:
return [self.data[i] for i in neighbors]
else:
return neighbors
def get_text_embedding(self, texts, batch=1000):
embeddings = []
for i in range(0, len(texts), batch):
text_batch = texts[i:(i+batch)]
emb_batch = self.use(text_batch)
embeddings.append(emb_batch)
embeddings = np.vstack(embeddings)
return embeddings
def pdf_to_text(pdf_path, start_page=1):
pdf = PdfReader(pdf_path)
text = ''
for i in range(start_page, len(pdf.pages)):
text += pdf.pages[i].extract_text()
return text
def text_to_chunks(text, start_page=1, chunk_size=512):
chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
return chunks
def unique_filename(basename):
# Append a unique ID to the end of the filename, before the extension
base, ext = os.path.splitext(basename)
return base + "_" + uuid.uuid4().hex + ext
def load_recommender(paths, start_page=1):
global recommender
chunks = []
for path in paths:
pdf_file = os.path.basename(path)
embeddings_file = f"{pdf_file}_{start_page}.npy"
if os.path.isfile(embeddings_file):
embeddings = np.load(embeddings_file)
recommender.embeddings = embeddings
recommender.fitted = True
print("Embeddings loaded from file")
continue
texts = pdf_to_text(path, start_page=start_page)
chunks.extend(text_to_chunks(texts, start_page=start_page))
recommender.fit(chunks)
np.save(embeddings_file, recommender.embeddings)
return 'Corpus Loaded.'
def generate_text(openAI_key, prompt, engine="gpt-3.5-turbo"):
openai.api_key = openAI_key
messages = [{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': prompt}]
completions = openai.ChatCompletion.create(
model=engine,
messages=messages,
max_tokens=512,
n=1,
stop=None,
temperature=0.7,
)
message = completions.choices[0].message['content']
return message
def generate_answer(question, openAI_key):
topn_chunks = recommender(question)
prompt = ""
prompt += 'search results:\n\n'
for c in topn_chunks:
prompt += c + '\n\n'
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
"Make sure the answer is correct and don't output false content. "\
"If you do not know the answer - answer 'information not provided' "\
"Answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "
prompt += f"Query: {question}\nAnswer:"
answer = generate_text(openAI_key, prompt, "gpt-3.5-turbo")
return answer
def main_loop(url: str, files: list, question:
str, openAI_key):
paths = []
if url.strip() != '':
glob_url = url
download_pdf(glob_url, 'corpus.pdf')
paths.append('corpus.pdf')
if files is not None and len(files) > 0:
for file in files:
old_file_name = file.name
file_name = old_file_name[:-12] + old_file_name[-4:]
file_name = unique_filename(file_name) # Ensure the new file name is unique
# Copy the content of the old file to the new file and delete the old file
with open(old_file_name, 'rb') as src, open(file_name, 'wb') as dst:
shutil.copyfileobj(src, dst)
os.remove(old_file_name)
paths.append(file_name)
load_recommender(paths)
if question.strip().lower() == 'exit':
return '', False
answer = generate_answer(question, openAI_key)
return answer, True # Assuming the function returns an answer in all other cases
def on_click(*args):
answer.value = main_loop(url.value, files.value, question.value)
recommender = SemanticSearch()
title = 'Cognitive pdfGPT'
description = """ Why use Cognitive Ask an Expert?
This is Cognitive Chat. Here you can upload multiple PDF files and query them as a single corpus of knowledge. 🛑DO NOT USE CONFIDENTIAL INFORMATION """
with gr.Blocks() as demo:
gr.Markdown(f'<center><h1>{title}</h1></center>')
gr.Markdown(description)
with gr.Row():
with gr.Group():
files = gr.Files(label='➡️ Upload your PDFs ⬅️ NO CONFIDENTIAL FILES ', file_types=['.pdf'])
url = gr.Textbox(label=' ')
question = gr.Textbox(label='🔤 Enter your question here 🔤')
btn = gr.Button(value='Submit')
btn.style(full_width=False)
with gr.Group():
gr.Image("logo.jpg")
answer = gr.Textbox(label='The answer to your question is :')
btn.click(main_loop, inputs=[url, files, question], outputs=[answer])
demo.launch(share=False, debug=True, auth=None, auth_message=None)
|