Spaces:
Running
Running
import pandas as pd | |
import gradio as gr | |
import os | |
from gradio_rangeslider import RangeSlider | |
import calendar | |
import datetime | |
import numpy as np | |
from huggingface_hub import HfApi | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from src.filter_utils import filter, filter_cols | |
from src.process_data import merge_data | |
import assets.text_content as tc | |
""" | |
CONSTANTS | |
""" | |
# For restarting the gradio application every 24 Hrs | |
TIME = 86400 # in seconds # Reload will not work locally - requires HFToken # The app launches locally as expected - only without the reload utility | |
""" | |
AUTO RESTART HF SPACE | |
""" | |
HF_TOKEN = os.environ.get("H4_TOKEN", None) | |
api = HfApi() | |
def restart_space(): | |
api.restart_space(repo_id=tc.HF_REPO, token=HF_TOKEN) | |
# Main Leaderboard containing everything | |
# text_leaderboard = pd.read_csv(os.path.join('assets', 'merged_data.csv')) | |
text_leaderboard = merge_data() | |
text_leaderboard = text_leaderboard.sort_values(by=tc.CLEMSCORE, ascending=False) | |
# When displaying latency values | |
text_leaderboard[tc.LATENCY] = text_leaderboard[tc.LATENCY].round(1) | |
text_leaderboard[tc.CLEMSCORE] = text_leaderboard[tc.CLEMSCORE].round(1) | |
open_weight_df = text_leaderboard[text_leaderboard[tc.OPEN_WEIGHT] == True] | |
if not open_weight_df.empty: # Check if filtered df is non-empty | |
# Get max parameter size, ignoring NaN values | |
params = open_weight_df[tc.PARAMS].dropna() | |
max_parameter_size = params.max() if not params.empty else 0 | |
# Short leaderboard containing fixed columns | |
short_leaderboard = filter_cols(text_leaderboard) | |
# html_table = short_leaderboard.to_html(escape=False, index=False) | |
## Extract data | |
langs = [] | |
licenses = [] | |
ip_prices = [] | |
op_prices = [] | |
latencies = [] | |
parameters = [] | |
contexts = [] | |
dates = [] | |
for i in range(len(text_leaderboard)): | |
lang_splits = text_leaderboard.iloc[i][tc.LANGS].split(',') | |
lang_splits = [s.strip() for s in lang_splits] | |
langs += lang_splits | |
license_name = text_leaderboard.iloc[i][tc.LICENSE_NAME] | |
licenses.append(license_name) | |
ip_prices.append(text_leaderboard.iloc[i][tc.INPUT]) | |
op_prices.append(text_leaderboard.iloc[i][tc.OUTPUT]) | |
latencies.append(text_leaderboard.iloc[i][tc.LATENCY]) | |
parameters.append(text_leaderboard.iloc[i][tc.PARAMS]) | |
contexts.append(text_leaderboard.iloc[i][tc.CONTEXT]) | |
dates.append(text_leaderboard.iloc[i][tc.RELEASE_DATE]) | |
langs = list(set(langs)) | |
langs.sort() | |
licenses = list(set(licenses)) | |
licenses.sort() | |
max_input_price = max(ip_prices) | |
max_output_price = max(op_prices) | |
max_latency = text_leaderboard[tc.LATENCY].max().round(3) | |
min_parameters = 0 if pd.isna(min(parameters)) else min(parameters) | |
max_parameter = max_parameter_size | |
parameter_step = 1 | |
min_context = min(contexts) | |
max_context = max(contexts) | |
context_step = 8 | |
min_date = min(dates) | |
max_date = max(dates) | |
# Date settings | |
today = datetime.date.today() | |
end_year = today.year | |
start_year = tc.START_YEAR | |
YEARS = list(range(int(start_year), int(end_year)+1)) | |
YEARS = [str(y) for y in YEARS] | |
MONTHS = list(calendar.month_name[1:]) | |
TITLE = tc.TITLE | |
llm_calc_app = gr.Blocks() | |
with llm_calc_app: | |
gr.HTML(TITLE) | |
with gr.Row(): | |
##################################### | |
# First Column | |
#################################### | |
## Language Select | |
with gr.Column(scale=2): | |
with gr.Row(): | |
lang_dropdown = gr.Dropdown( | |
choices=langs, | |
value=[], | |
multiselect=True, | |
label="Languages π£οΈ" | |
) | |
## Release Date range selection | |
with gr.Row(): | |
start_year_dropdown = gr.Dropdown( | |
choices = YEARS, | |
value=[], | |
label="Model Release - Year ποΈ" | |
) | |
start_month_dropdown = gr.Dropdown( | |
choices = MONTHS, | |
value=[], | |
label="Month π" | |
) | |
end_year_dropdown = gr.Dropdown( | |
choices = YEARS, | |
value=[], | |
label="End - Year ποΈ" | |
) | |
end_month_dropdown = gr.Dropdown( | |
choices = MONTHS, | |
value=[], | |
label="Month π" | |
) | |
## Price selection | |
with gr.Row(): | |
input_pricing_slider = RangeSlider( | |
minimum=0, | |
maximum=max_input_price, | |
value=(0, max_input_price), | |
label="π²/1M input tokens", | |
elem_id="double-slider-3" | |
) | |
output_pricing_slider = RangeSlider( | |
minimum=0, | |
maximum=max_output_price, | |
value=(0, max_output_price), | |
label="π²/1M output tokens", | |
elem_id="double-slider-4" | |
) | |
# License selection | |
with gr.Row(): | |
license_checkbox = gr.CheckboxGroup( | |
choices=licenses, | |
value=licenses, | |
label="License π‘οΈ", | |
) | |
############################################################# | |
# Second Column | |
############################################################# | |
with gr.Column(scale=1): | |
####### parameters ########### | |
with gr.Row(): | |
parameter_slider = RangeSlider( | |
minimum=0, | |
maximum=max_parameter, | |
label=f"Parameters π {int(min_parameters)}B - {int(max_parameter)}B+", | |
elem_id="double-slider-1", | |
step=parameter_step | |
) | |
########### Context range ################ | |
with gr.Row(): | |
context_slider = RangeSlider( | |
minimum=0, | |
maximum=max_context, | |
label="Context (k) π", | |
elem_id="double-slider-2", | |
step=context_step | |
) | |
############# Modality selection checkbox ############### | |
with gr.Row(): | |
multimodal_checkbox = gr.CheckboxGroup( | |
choices=[tc.TEXT, tc.SINGLE_IMG, tc.MULT_IMG, tc.AUDIO, tc.VIDEO], | |
value=[], | |
label="Modalities ππ·π§π¬", | |
) | |
# ############### Model Type Checkbox ############### | |
with gr.Row(): | |
open_weight_checkbox = gr.CheckboxGroup( | |
choices=[tc.OPEN, tc.COMM], | |
value=[tc.OPEN, tc.COMM], | |
label="Model Type π πΌ", | |
) | |
with gr.Row(): | |
""" | |
Main Leaderboard Row | |
""" | |
leaderboard_table = gr.Dataframe( | |
value=short_leaderboard, | |
elem_id="text-leaderboard-table", | |
interactive=False, | |
visible=True, | |
datatype=['str', 'number', 'number', 'date', 'number', 'number', 'number', 'number', 'markdown'] | |
) | |
dummy_leaderboard_table = gr.Dataframe( | |
value=text_leaderboard, | |
elem_id="dummy-leaderboard-table", | |
interactive=False, | |
visible=False | |
) | |
lang_dropdown.change( | |
filter, | |
[dummy_leaderboard_table, lang_dropdown, parameter_slider, | |
input_pricing_slider, output_pricing_slider, multimodal_checkbox, | |
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox], | |
[leaderboard_table], | |
queue=True | |
) | |
parameter_slider.change( | |
filter, | |
[dummy_leaderboard_table, lang_dropdown, parameter_slider, | |
input_pricing_slider, output_pricing_slider, multimodal_checkbox, | |
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox], | |
[leaderboard_table], | |
queue=True | |
) | |
input_pricing_slider.change( | |
filter, | |
[dummy_leaderboard_table, lang_dropdown, parameter_slider, | |
input_pricing_slider, output_pricing_slider, multimodal_checkbox, | |
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox], | |
[leaderboard_table], | |
queue=True | |
) | |
output_pricing_slider.change( | |
filter, | |
[dummy_leaderboard_table, lang_dropdown, parameter_slider, | |
input_pricing_slider, output_pricing_slider, multimodal_checkbox, | |
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox], | |
[leaderboard_table], | |
queue=True | |
) | |
multimodal_checkbox.change( | |
filter, | |
[dummy_leaderboard_table, lang_dropdown, parameter_slider, | |
input_pricing_slider, output_pricing_slider, multimodal_checkbox, | |
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox], | |
[leaderboard_table], | |
queue=True | |
) | |
open_weight_checkbox.change( | |
filter, | |
[dummy_leaderboard_table, lang_dropdown, parameter_slider, | |
input_pricing_slider, output_pricing_slider, multimodal_checkbox, | |
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox], | |
[leaderboard_table], | |
queue=True | |
) | |
context_slider.change( | |
filter, | |
[dummy_leaderboard_table, lang_dropdown, parameter_slider, | |
input_pricing_slider, output_pricing_slider, multimodal_checkbox, | |
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox], | |
[leaderboard_table], | |
queue=True | |
) | |
start_year_dropdown.change( | |
filter, | |
[dummy_leaderboard_table, lang_dropdown, parameter_slider, | |
input_pricing_slider, output_pricing_slider, multimodal_checkbox, | |
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox], | |
[leaderboard_table], | |
queue=True | |
) | |
start_month_dropdown.change( | |
filter, | |
[dummy_leaderboard_table, lang_dropdown, parameter_slider, | |
input_pricing_slider, output_pricing_slider, multimodal_checkbox, | |
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox], | |
[leaderboard_table], | |
queue=True | |
) | |
end_year_dropdown.change( | |
filter, | |
[dummy_leaderboard_table, lang_dropdown, parameter_slider, | |
input_pricing_slider, output_pricing_slider, multimodal_checkbox, | |
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox], | |
[leaderboard_table], | |
queue=True | |
) | |
end_month_dropdown.change( | |
filter, | |
[dummy_leaderboard_table, lang_dropdown, parameter_slider, | |
input_pricing_slider, output_pricing_slider, multimodal_checkbox, | |
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox], | |
[leaderboard_table], | |
queue=True | |
) | |
license_checkbox.change( | |
filter, | |
[dummy_leaderboard_table, lang_dropdown, parameter_slider, | |
input_pricing_slider, output_pricing_slider, multimodal_checkbox, | |
context_slider, open_weight_checkbox, start_year_dropdown, start_month_dropdown, end_year_dropdown, end_month_dropdown, license_checkbox], | |
[leaderboard_table], | |
queue=True | |
) | |
llm_calc_app.load() | |
llm_calc_app.queue() | |
# Add scheduler to auto-restart the HF space at every TIME interval and update every component each time | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, 'interval', seconds=TIME) | |
scheduler.start() | |
# Log current start time and scheduled restart time | |
print(datetime.datetime.now()) | |
print(f"Scheduled restart at {datetime.datetime.now() + datetime.timedelta(seconds=TIME)}") | |
llm_calc_app.launch() | |