File size: 13,776 Bytes
2c87116
2428d17
 
9cee2a5
c1a9185
fd084a4
030ddc3
c4788e3
fd084a4
22ed20d
561e8f7
fd084a4
fb6a589
67dc9b0
fd084a4
fb6a589
165ff3a
 
fd084a4
 
 
 
09f2d58
165ff3a
 
 
 
 
2df5624
 
 
09f2d58
 
 
 
 
 
 
4751a57
 
 
 
 
 
9cee2a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561e8f7
3a20953
 
9cee2a5
 
2a39b6d
9cee2a5
 
 
 
 
 
 
 
 
 
 
 
 
 
ddc3a5a
9cee2a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a39b6d
9cee2a5
 
2df5624
030ddc3
 
 
 
 
 
 
 
4751a57
 
 
7bb8a83
4751a57
 
 
 
 
 
 
2428d17
09f2d58
d56bf2d
 
 
2db96ca
 
abd37c8
d56bf2d
abd37c8
d56bf2d
67dc9b0
2428d17
abd37c8
4751a57
 
 
 
2428d17
abd37c8
 
4751a57
2428d17
abd37c8
 
 
cd209de
a228730
 
 
ddc3a5a
aafd588
ddc3a5a
cd209de
 
 
 
ddc3a5a
2428d17
ddc3a5a
 
 
abd37c8
e2d494c
5db389f
 
 
 
7bb8a83
 
 
5db389f
ddc3a5a
5db389f
 
 
 
 
 
 
 
 
 
2428d17
5db389f
2428d17
5db389f
2a39b6d
5db389f
2a39b6d
2428d17
5db389f
 
 
 
9cee2a5
5db389f
 
 
 
 
 
 
2a39b6d
5db389f
2428d17
5db389f
 
 
 
 
 
 
 
 
7bb8a83
 
 
 
 
5db389f
 
 
2428d17
 
2a39b6d
2428d17
 
abd37c8
030ddc3
 
 
a8b8684
22ed20d
 
fb6a589
 
8b17b49
cd209de
 
030ddc3
fb6a589
 
 
 
 
 
138f923
4751a57
030ddc3
c574006
303669c
 
 
 
 
 
 
 
 
 
 
 
 
 
4751a57
22ed20d
 
 
 
 
c574006
030ddc3
303669c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165ff3a
303669c
 
 
 
 
 
 
165ff3a
65eeead
303669c
65eeead
 
 
 
030ddc3
65eeead
030ddc3
 
c4788e3
 
 
 
 
 
 
 
 
 
 
 
 
b37a6fe
 
 
 
030ddc3
 
c4788e3
3fa4157
 
 
 
 
 
b37a6fe
030ddc3
 
 
abd37c8
030ddc3
 
 
 
 
 
 
 
 
 
 
abd37c8
65eeead
 
 
2428d17
030ddc3
 
2428d17
 
030ddc3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# app.py
# Loads all completed shards and finds the most similar vector to a given query vector.

from dataclasses import dataclass
from itertools import chain
import json
import os
from math import log10
from pathlib import Path
from sys import stderr
from typing import TypedDict, TypeVar, Any, Callable

from datasets import Dataset
from datasets.search import FaissIndex
import faiss
from huggingface_hub import snapshot_download
import numpy as np
import numpy.typing as npt
import gradio as gr
import requests
from sentence_transformers import SentenceTransformer
import torch

try:
    import spaces
except ImportError:
    spaces = None

T = TypeVar("T")
U = TypeVar("U")


class IndexParameters(TypedDict):
    recall: float  # in this case 10-recall@10
    exec_time: float  # seconds (raw faiss measure is in milliseconds)
    param_string: str  # pass directly to faiss index


class Params(TypedDict):
    dimensions: int | None
    normalize: bool
    optimal_params: list[IndexParameters]


@dataclass
class Work:
    title: str | None
    abstract: str | None  # recovered from abstract_inverted_index
    authors: list[str]  # takes raw_author_name field from Authorship objects
    journal_name: str | None  # takes the display_name field of the first location
    year: int
    citations: int
    doi: str | None

    def __post_init__(self):
        self._check_type(self.title, str, nullable=True)
        self._check_type(self.abstract, str, nullable=True)
        self._check_type(self.authors, list)
        for author in self.authors:
            self._check_type(author, str)
        self._check_type(self.journal_name, str, nullable=True)
        self._check_type(self.year, int)
        self._check_type(self.citations, int)
        self._check_type(self.doi, str, nullable=True)

    @classmethod
    def from_dict(cls, d: dict) -> "Work":
        inverted_index: None | dict[str, list[int]] = d["abstract_inverted_index"]
        abstract = cls._recover_abstract(inverted_index) if inverted_index else None

        try:
            journal_name = d["primary_location"]["source"]["display_name"]
        except (TypeError, KeyError):  # key didn't exist or a value was null
            journal_name = None

        return cls(
            title=d["title"],
            abstract=abstract,
            authors=[authorship["raw_author_name"] for authorship in d["authorships"]],
            journal_name=journal_name,
            year=d["publication_year"],
            citations=d["cited_by_count"],
            doi=d["doi"],
        )

    @staticmethod
    def get_raw_fields() -> list[str]:
        return [
            "title",
            "abstract_inverted_index",
            "authorships",
            "primary_location",
            "publication_year",
            "cited_by_count",
            "doi"
        ]

    @staticmethod
    def _check_type(v: Any, t: type, nullable: bool = False):
        if not ((nullable and v is None) or isinstance(v, t)):
            v_type_name = f"{type(v)}" if v is not None else "None"
            t_name = f"{t}"
            if nullable:
                t_name += " | None"
            raise ValueError(f"expected {t_name}, got {v_type_name}")

    @staticmethod
    def _recover_abstract(inverted_index: dict[str, list[int]]) -> str:
        abstract_size = max(max(locs) for locs in inverted_index.values())+1

        abstract_words: list[str | None] = [None] * abstract_size
        for word, locs in inverted_index.items():
            for loc in locs:
                abstract_words[loc] = word

        return " ".join(word for word in abstract_words if word is not None)


def get_env_var(key: str, type_: Callable[[str], T] = str, default: U = None) -> T | U:
    var = os.getenv(key)
    if var is not None:
        var = type_(var)
    else:
        var = default
    return var


def get_model(
    model_name: str, params_dir: Path, trust_remote_code: bool
) -> tuple[bool, SentenceTransformer]:
    # TODO: params["normalize"] for models like all-MiniLM-v6, which already normalize?
    with open(params_dir / "params.json", "r") as f:
        params: Params = json.load(f)
    return params["normalize"], SentenceTransformer(
        model_name,
        trust_remote_code=trust_remote_code,
        truncate_dim=params["dimensions"]
    )


def open_ondisk(dir: Path) -> faiss.Index:
    # without IO_FLAG_ONDISK_SAME_DIR, read_index gets on-disk indices in working dir
    return faiss.read_index(str(dir / "index.faiss"), faiss.IO_FLAG_ONDISK_SAME_DIR)


def get_index(dir: Path, search_time_s: float) -> Dataset:
    # NOTE: use a private attr to load the index with IO_FLAG_ONDISK_SAME_DIR!
    index: Dataset = Dataset.from_parquet(str(dir / "ids.parquet"))  # type: ignore
    faiss_index = open_ondisk(dir)
    index._indexes["embedding"] = FaissIndex(None, None, None, faiss_index)

    with open(dir / "params.json", "r") as f:
        params: Params = json.load(f)
    under = [p for p in params["optimal_params"] if p["exec_time"] < search_time_s]
    optimal = max(under, key=(lambda p: p["recall"]))
    optimal_string = optimal["param_string"]

    ps = faiss.ParameterSpace()
    ps.initialize(faiss_index)
    ps.set_index_parameters(faiss_index, optimal_string)

    return index


def execute_request(ids: list[str], mailto: str | None) -> list[Work]:
    if len(ids) > 100:
        raise ValueError("querying /works endpoint with more than 100 works")

    # query with the /works endpoint with a specific list of IDs and fields
    search_filter = f'openalex_id:{"|".join(ids)}'
    search_select = ",".join(["id"] + Work.get_raw_fields())
    params = {"filter": search_filter, "select": search_select, "per-page": 100}
    if mailto is not None:
        params["mailto"] = mailto
    response = requests.get("https://api.openalex.org/works", params)
    response.raise_for_status()

    # the response is not necessarily ordered, so order them
    response = {d["id"]: Work.from_dict(d) for d in response.json()["results"]}
    return [response[id_] for id_ in ids]


def collapse_newlines(x: str) -> str:
    return x.replace("\r\n", " ").replace("\n", " ").replace("\r", " ")


def format_response(
    neighbors: list[Work], distances: list[float], calculate_similarity: bool = False
) -> str:
    result_string = ""
    for work, distance in zip(neighbors, distances):
        entry_string = "## "

        if work.title and work.doi:
            entry_string += f"[{collapse_newlines(work.title)}]({work.doi})"
        elif work.title:
            entry_string += f"{collapse_newlines(work.title)}"
        elif work.doi:
            entry_string += f"[No title]({work.doi})"
        else:
            entry_string += "No title"

        entry_string += "\n\n**"

        if len(work.authors) >= 3:  # truncate to 3 if necessary
            entry_string += ", ".join(work.authors[:3]) + ", ..."
        elif work.authors:
            entry_string += ", ".join(work.authors)
        else:
            entry_string += "No author"

        entry_string += f", {work.year}"

        if work.journal_name:
            entry_string += " - " + work.journal_name

        entry_string += "**\n\n"

        if work.abstract:
            abstract = collapse_newlines(work.abstract)
            if len(abstract) > 2000:
                abstract = abstract[:2000] + "..."
            entry_string += abstract
        else:
            entry_string += "No abstract"

        entry_string += "\n\n*"

        meta: list[tuple[str, str]] = []
        if work.citations:  # don't tack "Cited-by count: 0" on someones's work
            meta.append(("Cited-by count", str(work.citations)))
        if work.doi:
            meta.append(("DOI", work.doi.replace("https://doi.org/", "")))
        if calculate_similarity:
            # if query and result are unit vectors, the cosine sim is 1 - dist^2 / 2
            meta.append(("Similarity", f"{1 - distance / 2:.2f}"))  # faiss gives dist^2
        else:
            meta.append(("Distance", f"{distance:.2f}"))
        entry_string += ("&nbsp;" * 4).join(": ".join(tup) for tup in meta)

        entry_string += "*\n"

        result_string += entry_string

    return result_string


def main():
    # TODO: figure out some better defaults?
    model_name = get_env_var("MODEL_NAME", default="all-MiniLM-L6-v2")
    prompt_name = get_env_var("PROMPT_NAME")
    trust_remote_code = get_env_var("TRUST_REMOTE_CODE", bool, default=False)
    fp16 = get_env_var("FP16", bool, default=False)
    dir = get_env_var("DIR", Path)
    repo = get_env_var("REPO", str)
    search_time_s = get_env_var("SEARCH_TIME_S", float, default=1)
    k = get_env_var("K", int, default=20)  # TODO: can't go higher than 20 yet
    mailto = get_env_var("MAILTO", str, None)

    if dir is None:  # acquire the index if it's not local
        if repo is None:
            repo = "colonelwatch/abstracts-faiss"
        dir = Path(snapshot_download(repo, repo_type="dataset")) / "index"
    elif repo is not None:
        print('warning: used "REPO" and also "DIR", ignoring "REPO"...', file=stderr)

    normalize, model = get_model(model_name, dir, trust_remote_code)
    index = get_index(dir, search_time_s)

    # follow model.encode logic for acquiring the prompt
    if prompt_name is None and model.default_prompt_name is not None:
        prompt_name = model.default_prompt_name
        if not isinstance(prompt_name, str):
            raise TypeError("invalid prompt name type")
    prompt: str | None = model.prompts[prompt_name] if prompt_name is not None else None

    # follow model.encode logic for setting extra_features
    extra_features: dict[str, Any] = {}
    if prompt is not None:
        tokenized = model.tokenize([prompt])
        if "input_ids" in tokenized:
            extra_features["prompt_length"] = tokenized["input_ids"].shape[-1] - 1

    model.eval()
    if torch.cuda.is_available():
        model = model.half().cuda() if fp16 else model.bfloat16().cuda()
        # TODO: if huggingface datasets exposes an fp16 gpu option, use it here
    elif fp16:
        print('warning: used "FP16" on CPU-only system, ignoring...', file=stderr)
    model.compile(mode="reduce-overhead")

    def encode_tokens(features: dict[str, Any]) -> npt.NDArray[np.float32]:
        # Tokenize (which yields a dict) then do a non-blocking transfer
        features = {
            k: v.to(model.device, non_blocking=True) for k, v in features.items()
        } | extra_features

        with torch.no_grad():
            out_features = model.forward(features)
            embeddings = out_features["sentence_embedding"]

            embeddings = embeddings[0]
            if model.truncate_dim:
                embeddings = embeddings[:model.truncate_dim]
            if normalize:
                embeddings = torch.nn.functional.normalize(embeddings, dim=0)

        return embeddings.cpu().float().numpy()  # faiss expected CPU float32 numpy arr

    if spaces:
        encode_tokens = spaces.GPU(encode_tokens)

    def encode_string(query: str) -> npt.NDArray[np.float32]:
        if prompt:
            query = prompt + query
        tokens = model.tokenize([query])
        return encode_tokens(tokens)

    def search(query: str) -> str:
        query_embedding = encode_string(query)
        distances, faiss_ids = index.search("embedding", query_embedding, k)

        openalex_ids = index[faiss_ids]["id"]
        works = execute_request(openalex_ids, mailto)

        return format_response(works, distances, calculate_similarity=normalize)

    with gr.Blocks() as demo:
        # figure out the words to describe the quantity
        n_entries = len(index)
        n_digits = int(log10(n_entries))
        divisor, postfix = {
            0: (1, ""),
            1: (1000, " thousand"),
            2: (1000000, " million"),
            3: (1000000000, " billion"),
        }[n_digits // 3]
        significand = n_entries / divisor
        significand = round(significand, 1 if (n_digits % 3 == 1) else None)
        quantity = str(significand) + postfix

        # split the (huggingface) model name and get the link
        model_publisher, model_human_name = model_name.split("/")
        model_link = f"https://huggingface.co/{model_publisher}/{model_human_name}"

        gr.Markdown("# abstracts-index")
        gr.Markdown(
            f"Explore {quantity} academic publications selected from the "
            "[OpenAlex](https://openalex.org) dataset (as of January 1st, 2025) with "
            "semantic search, not keyword search. This project is an index of the "
            "embeddings generated from their titles and abstracts. The embeddings were "
            f"generated using the [{model_human_name}]({model_link}) model, and the "
            "index was built using the "
            "[faiss](https://github.com/facebookresearch/faiss) module. The build "
            "scripts and more information available at the main repo "
            "[abstracts-search](https://github.com/colonelwatch/abstracts-search) on "
            "Github."
        )

        query = gr.Textbox(
            lines=1, placeholder="Enter your query here", show_label=False
        )
        btn = gr.Button("Search")
        results = gr.Markdown(
            latex_delimiters=[
                {"left": "$$", "right": "$$", "display": False},
                {"left": "$", "right": "$", "display": False},
            ],
            container=True,
        )

        # NOTE: ZeroGPU doesn't seem to support batching
        query.submit(search, inputs=[query], outputs=[results])
        btn.click(search, inputs=[query], outputs=[results])

    demo.queue()
    demo.launch()


if __name__ == "__main__":
    main()