File size: 17,055 Bytes
e05f54a 7216234 b6472af e05f54a 7216234 e05f54a 0b076b7 e05f54a b6472af 6e6214b deafe70 6e6214b deafe70 d217d18 b6472af d217d18 0d00a12 b6472af d217d18 b6472af e05f54a b6472af deafe70 e05f54a 0d00a12 deafe70 e05f54a 4587527 e05f54a 4587527 e05f54a deafe70 e05f54a deafe70 4587527 deafe70 e05f54a 0d00a12 deafe70 0d00a12 680c2df e05f54a 680c2df e05f54a 0b076b7 680c2df e05f54a b6472af 0b076b7 b6472af 7216234 b6472af 6e6214b e05f54a b6472af d217d18 e05f54a 7216234 e05f54a 680c2df b6472af e05f54a 680c2df b6472af e05f54a b6472af e05f54a 680c2df b6472af e05f54a 680c2df b6472af e05f54a b6472af 7216234 680c2df 0b076b7 7216234 0b076b7 b6472af e05f54a b6472af e05f54a 11433f3 e05f54a 3109640 e05f54a 11433f3 e05f54a 9cba132 d217d18 e05f54a b6472af d217d18 b6472af d217d18 b6472af d217d18 e05f54a 60e4a59 9cba132 e05f54a b6472af e05f54a 11433f3 e05f54a b6472af d217d18 b6472af d217d18 b6472af e05f54a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import gradio as gr
import json
import shutil
import subprocess
import urllib.parse
from pathlib import Path
from huggingface_hub import hf_hub_download, HfApi, scan_cache_dir
from coremltools import ComputeUnit
from coremltools.models.utils import _is_macos, _macos_version
from transformers.onnx.utils import get_preprocessor
from exporters.coreml import export
from exporters.coreml.features import FeaturesManager
from exporters.coreml.validate import validate_model_outputs
compute_units_mapping = {
"All": ComputeUnit.ALL,
"CPU": ComputeUnit.CPU_ONLY,
"CPU + GPU": ComputeUnit.CPU_AND_GPU,
"CPU + NE": ComputeUnit.CPU_AND_NE,
}
compute_units_labels = list(compute_units_mapping.keys())
framework_mapping = {
"PyTorch": "pt",
"TensorFlow": "tf",
}
framework_labels = list(framework_mapping.keys())
precision_mapping = {
"Float32": "float32",
"Float16 quantization": "float16",
}
precision_labels = list(precision_mapping.keys())
tolerance_mapping = {
"Model default": None,
"1e-2": 1e-2,
"1e-3": 1e-3,
"1e-4": 1e-4,
}
tolerance_labels = list(tolerance_mapping.keys())
push_mapping = {
"Submit a PR to the original repo": "pr",
"Create a new repo": "new",
}
push_labels = list(push_mapping.keys())
tasks_mapping = {
"default": "Feature Extraction",
"causal-lm": "Text Generation",
"ctc": "CTC (Connectionist Temporal Classification)",
"image-classification": "Image Classification",
"image-segmentation": "Image Segmentation",
"masked-im": "Image Fill-Mask",
"masked-lm": "Fill-Mask",
"multiple-choice": "Multiple Choice",
"next-sentence-prediction": "Next Sentence Prediction",
"object-detection": "Object Detection",
"question-answering": "Question Answering",
"semantic-segmentation": "Semantic Segmentation",
"seq2seq-lm": "Text to Text Generation",
"sequence-classification": "Text Classification",
"speech-seq2seq": "Audio to Audio",
"token-classification": "Token Classification",
}
reverse_tasks_mapping = {v: k for k, v in tasks_mapping.items()}
tasks_labels = list(tasks_mapping.keys())
# Map pipeline_tag to internal exporters features/tasks
tags_to_tasks_mapping = {
"feature-extraction": "default",
"text-generation": "causal-lm",
"image-classification": "image-classification",
"image-segmentation": "image-segmentation",
"fill-mask": "masked-lm",
"object-detection": "object-detection",
"question-answering": "question-answering",
"text2text-generation": "seq2seq-lm",
"text-classification": "sequence-classification",
"token-classification": "token-classification",
}
def error_str(error, title="Error", model=None, task=None, framework=None, compute_units=None, precision=None, tolerance=None, destination=None, open_discussion=True):
if not error: return ""
discussion_text = ""
if open_discussion:
issue_title = urllib.parse.quote(f"Error converting {model}")
issue_description = urllib.parse.quote(f"""Conversion Settings:
Model: {model}
Task: {task}
Framework: {framework}
Compute Units: {compute_units}
Precision: {precision}
Tolerance: {tolerance}
Push to: {destination}
Error: {error}
""")
issue_url = f"https://huggingface.co/spaces/pcuenq/transformers-to-coreml/discussions/new?title={issue_title}&description={issue_description}"
discussion_text = f"You can open a discussion on the [Hugging Face Hub]({issue_url}) to report this issue."
return f"""
#### {title}
{error}
{discussion_text}
"""
def url_to_model_id(model_id_str):
if not model_id_str.startswith("https://huggingface.co/"): return model_id_str
return model_id_str.split("/")[-2] + "/" + model_id_str.split("/")[-1]
def get_pr_url(api, repo_id, title):
try:
discussions = api.get_repo_discussions(repo_id=repo_id)
except Exception:
return None
for discussion in discussions:
if (
discussion.status == "open"
and discussion.is_pull_request
and discussion.title == title
):
return f"https://huggingface.co/{repo_id}/discussions/{discussion.num}"
def retrieve_model_info(model_id):
api = HfApi()
model_info = api.model_info(model_id)
tags = model_info.tags
frameworks = [tag for tag in tags if tag in ["pytorch", "tf"]]
return {
"pipeline_tag": model_info.pipeline_tag,
"frameworks": sorted(["PyTorch" if f == "pytorch" else "TensorFlow" for f in frameworks]),
}
def supported_frameworks(model_info):
"""
Return a list of supported frameworks (`PyTorch` or `TensorFlow`) for a given model_id.
Only PyTorch and Tensorflow are supported.
"""
api = HfApi()
model_info = api.model_info(model_id)
tags = model_info.tags
frameworks = [tag for tag in tags if tag in ["pytorch", "tf"]]
return sorted(["PyTorch" if f == "pytorch" else "TensorFlow" for f in frameworks])
def on_model_change(model):
model = url_to_model_id(model)
tasks = None
error = None
frameworks = []
selected_framework = None
selected_task = None
try:
config_file = hf_hub_download(model, filename="config.json")
if config_file is None:
raise Exception(f"Model {model} not found")
with open(config_file, "r") as f:
config_json = f.read()
config = json.loads(config_json)
model_type = config["model_type"]
# Ignore `-with-past` for now
features = FeaturesManager.get_supported_features_for_model_type(model_type)
tasks = list(features.keys())
tasks = [task for task in tasks if "-with-past" not in task]
model_info = retrieve_model_info(model)
frameworks = model_info["frameworks"]
selected_framework = frameworks[0] if len(frameworks) > 0 else None
pipeline_tag = model_info["pipeline_tag"]
# print(pipeline_tag)
# Select the task corresponding to the pipeline tag
if tasks:
if pipeline_tag in tags_to_tasks_mapping:
selected_task = tags_to_tasks_mapping[pipeline_tag]
else:
selected_task = tasks[0]
# Convert to UI labels
tasks = [tasks_mapping[task] for task in tasks]
selected_task = tasks_mapping[selected_task]
except Exception as e:
error = e
model_type = None
return (
gr.update(visible=bool(model_type)), # Settings column
gr.update(choices=tasks, value=selected_task), # Tasks
gr.update(visible=len(frameworks)>1, choices=frameworks, value=selected_framework), # Frameworks
gr.update(value=error_str(error, model=model)), # Error
)
def convert_model(preprocessor, model, model_coreml_config,
compute_units, precision, tolerance, output,
use_past=False, seq2seq=None,
progress=None, progress_start=0.1, progress_end=0.8):
coreml_config = model_coreml_config(model.config, use_past=use_past, seq2seq=seq2seq)
model_label = "model" if seq2seq is None else seq2seq
progress(progress_start, desc=f"Converting {model_label}")
mlmodel = export(
preprocessor,
model,
coreml_config,
quantize=precision,
compute_units=compute_units,
)
filename = output
if seq2seq == "encoder":
filename = filename.parent / ("encoder_" + filename.name)
elif seq2seq == "decoder":
filename = filename.parent / ("decoder_" + filename.name)
filename = filename.as_posix()
mlmodel.save(filename)
if _is_macos() and _macos_version() >= (12, 0):
progress(progress_end * 0.8, desc=f"Validating {model_label}")
if tolerance is None:
tolerance = coreml_config.atol_for_validation
validate_model_outputs(coreml_config, preprocessor, model, mlmodel, tolerance)
progress(progress_end, desc=f"Done converting {model_label}")
def push_to_hub(destination, directory, task, precision, token=None):
api = HfApi(token=token)
api.create_repo(destination, token=token, exist_ok=True)
commit_message="Add Core ML conversion"
api.upload_folder(
folder_path=directory,
repo_id=destination,
token=token,
create_pr=True,
commit_message=commit_message,
commit_description=f"Core ML conversion, task={task}, precision={precision}",
)
subprocess.run(["rm", "-rf", directory])
return get_pr_url(HfApi(token=token), destination, commit_message)
def cleanup(model_id, exported):
if exported:
shutil.rmtree(exported)
# We remove the model from the huggingface cache, so it will have to be downloaded again
# if the user wants to convert it for a different task or precision.
# Alternatively, we could remove models older than 1 day or so.
cache_info = scan_cache_dir()
try:
repo = next(repo for repo in cache_info.repos if repo.repo_id==model_id)
except StopIteration:
# The model was not in the cache!
return
if repo is not None:
for revision in repo.revisions:
delete_strategy = cache_info.delete_revisions(revision.commit_hash)
delete_strategy.execute()
def convert(model_id, task,
compute_units, precision, tolerance, framework,
push_destination, destination_model, token,
progress=gr.Progress()):
model_id = url_to_model_id(model_id)
task = reverse_tasks_mapping[task]
compute_units = compute_units_mapping[compute_units]
precision = precision_mapping[precision]
tolerance = tolerance_mapping[tolerance]
framework = framework_mapping[framework]
push_destination = push_mapping[push_destination]
if push_destination == "pr":
destination_model = model_id
if token is None or token == "":
return error_str("Please provide a token to push to the Hub.", open_discussion=False)
# TODO: support legacy format
exported_base = Path("exported")/model_id
output = exported_base/"coreml"/task
output.mkdir(parents=True, exist_ok=True)
output = output/f"{precision}_model.mlpackage"
try:
progress(0, desc="Downloading model")
preprocessor = get_preprocessor(model_id)
model = FeaturesManager.get_model_from_feature(task, model_id, framework=framework)
_, model_coreml_config = FeaturesManager.check_supported_model_or_raise(model, feature=task)
if task in ["seq2seq-lm", "speech-seq2seq"]:
convert_model(
preprocessor,
model,
model_coreml_config,
compute_units,
precision,
tolerance,
output,
seq2seq="encoder",
progress=progress,
progress_start=0.1,
progress_end=0.4,
)
progress(0.4, desc="Converting decoder")
convert_model(
preprocessor,
model,
model_coreml_config,
compute_units,
precision,
tolerance,
output,
seq2seq="decoder",
progress=progress,
progress_start=0.4,
progress_end=0.7,
)
else:
convert_model(
preprocessor,
model,
model_coreml_config,
compute_units,
precision,
tolerance,
output,
progress=progress,
progress_end=0.7,
)
progress(0.7, "Uploading model to Hub")
pr_url = push_to_hub(destination_model, exported_base, task, precision, token=token)
progress(1, "Done")
cleanup(model_id, exported_base)
did_validate = _is_macos() and _macos_version() >= (12, 0)
result = f"""### Successfully converted!
We opened a PR to add the Core ML weights to the model repo. Please, view and merge the PR [here]({pr_url}).
{f"**Note**: model could not be automatically validated as this Space is not running on macOS." if not did_validate else ""}
"""
return result
except Exception as e:
return error_str(e, model=model_id, task=task, framework=framework, compute_units=compute_units, precision=precision, tolerance=tolerance)
DESCRIPTION = """
## Convert a `transformers` model to Core ML
With this Space you can try to convert a transformers model to Core ML. It uses the 🤗 Hugging Face [Exporters repo](https://github.com/huggingface/exporters) under the hood.
Note that not all models are supported. If you get an error on a model you'd like to convert, please open an issue in the discussions tab of this Space. You'll get a link to do it when an error occurs.
"""
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## 1. Load model info")
input_model = gr.Textbox(
max_lines=1,
label="Model name or URL, such as apple/mobilevit-small",
placeholder="pcuenq/distilbert-base-uncased",
value="pcuenq/distilbert-base-uncased",
)
btn_get_tasks = gr.Button("Load")
with gr.Column(scale=3):
with gr.Column(visible=False) as group_settings:
gr.Markdown("## 2. Select Task")
radio_tasks = gr.Radio(label="Choose the task for the converted model.")
gr.Markdown("The `default` task is suitable for feature extraction.")
radio_framework = gr.Radio(
visible=False,
label="Framework",
choices=framework_labels,
value=framework_labels[0],
)
radio_compute = gr.Radio(
label="Compute Units",
choices=compute_units_labels,
value=compute_units_labels[0],
)
radio_precision = gr.Radio(
label="Precision",
choices=precision_labels,
value=precision_labels[0],
)
radio_tolerance = gr.Radio(
label="Absolute Tolerance for Validation",
choices=tolerance_labels,
value=tolerance_labels[0],
)
with gr.Group():
text_token = gr.Textbox(label="Hugging Face Token", placeholder="hf_xxxx", value="")
radio_push = gr.Radio(
label="Destination Model",
choices=push_labels,
value=push_labels[0],
)
# TODO: public/private
text_destination = gr.Textbox(visible=False, label="Destination model name", value="")
btn_convert = gr.Button("Convert & Push")
gr.Markdown("Conversion will take a few minutes.")
error_output = gr.Markdown(label="Output")
# # Clear output
# btn_get_tasks.click(lambda _: gr.update(value=''), None, error_output)
# input_model.submit(lambda _: gr.update(value=''), None, error_output)
# btn_convert.click(lambda _: gr.update(value=''), None, error_output)
input_model.submit(
fn=on_model_change,
inputs=input_model,
outputs=[group_settings, radio_tasks, radio_framework, error_output],
queue=False,
scroll_to_output=True
)
btn_get_tasks.click(
fn=on_model_change,
inputs=input_model,
outputs=[group_settings, radio_tasks, radio_framework, error_output],
queue=False,
scroll_to_output=True
)
btn_convert.click(
fn=convert,
inputs=[input_model, radio_tasks, radio_compute, radio_precision, radio_tolerance, radio_framework, radio_push, text_destination, text_token],
outputs=error_output,
scroll_to_output=True,
# api_name="convert",
)
radio_push.change(
lambda x: gr.update(visible=x == "Create a new repo"),
inputs=radio_push,
outputs=text_destination,
queue=False,
scroll_to_output=False
)
gr.HTML("""
<div style="border-top: 0.5px solid #303030;">
<br>
<p style="color:gray;font-size:smaller;font-style:italic">Adapted from https://huggingface.co/spaces/diffusers/sd-to-diffusers/tree/main</p><br>
</div>
""")
demo.queue(concurrency_count=1, max_size=10)
demo.launch(debug=True, share=False)
|