Spaces:
Sleeping
Sleeping
import streamlit as st | |
import matplotlib.pyplot as plt | |
image_path_1 = 'C:/Users/DELL E5490/Desktop/project/data/.env/DataAnalysis.jpg' | |
image_path_2 = 'C:/Users/DELL E5490/Desktop/project/data/.env/Data-Analytics-Life-Cycle.jpg' | |
st.image(image_path_1, caption=None, use_column_width=True, clamp=True, channels="RGB", output_format="auto") | |
st.title("Intuition of Data Analysis") | |
if 'show_data' not in st.session_state: | |
st.session_state.show_data = False | |
if 'show_analysis' not in st.session_state: | |
st.session_state.show_analysis = False | |
if 'show_python' not in st.session_state: | |
st.session_state.show_python = False | |
if 'show_life_cycle' not in st.session_state: | |
st.session_state.show_life_cycle = False | |
def toggle(section): | |
st.session_state.show_data = False | |
st.session_state.show_analysis = False | |
st.session_state.show_python = False | |
st.session_state.show_life_cycle = False | |
if section == 'data': | |
st.session_state.show_data = True | |
elif section == 'analysis': | |
st.session_state.show_analysis = True | |
elif section == 'python': | |
st.session_state.show_python = True | |
elif section == 'life_cycle': | |
st.session_state.show_life_cycle = True | |
if st.button('What is Data π?'): | |
toggle('data') | |
if st.session_state.show_data: | |
st.write("Data consists of facts and information that are used to generate insights and conclusions.") | |
if st.button('What is Data Analysis π?'): | |
toggle('analysis') | |
if st.session_state.show_analysis: | |
st.write("""Data analysis is a comprehensive process that involves collecting, cleaning, transforming, integrating, reducing, and validating data to uncover meaningful insights. Python is a versatile and powerful tool for data analysis due to its extensive libraries, automation capabilities, and strong community support. By following a structured roadmap for data analysis, including univariate, bivariate, and multivariate analyses, you can effectively explore and understand your data to make informed decisions.""") | |
if st.button('Why Use Python for Data Analysis π€?'): | |
toggle('python') | |
if st.session_state.show_python: | |
st.markdown(""" | |
While tools like Excel and Power BI are commonly used for data visualization and analysis, Python is a powerful language for data analysis due to several reasons: | |
- *Versatility*: Python can handle a wide variety of data types and sources, making it suitable for diverse data analysis tasks. | |
- *Libraries*: Python has extensive libraries such as Pandas, NumPy, Matplotlib, and Scikit-learn that facilitate data manipulation, analysis, and visualization. | |
- *Automation*: Python allows for automation of repetitive tasks and complex computations, improving efficiency and productivity. | |
- *Community Support*: Python has a large and active community which means abundant resources, tutorials, and support. | |
""") | |
advantages = ['Versatility', 'Libraries', 'Automation', 'Community Support'] | |
scores = [8, 9, 7, 9] | |
fig, ax = plt.subplots() | |
ax.barh(advantages, scores, color=['blue', 'green', 'orange', 'red']) | |
ax.set_xlabel('Importance') | |
ax.set_title('Advantages of Python for Data Analysis') | |
st.pyplot(fig) | |
if st.button('Data Analysis Life Cycle π'): | |
toggle('life_cycle') | |
if st.session_state.show_life_cycle: | |
st.markdown(""" | |
The data analysis life cycle includes the following steps: | |
- **Case Scenario**: Define the problem statement and the objectives of the analysis. | |
- **Collect the Data**: If no data is available, fetch the data from relevant sources. | |
- **Data Understanding**: Preprocess the data by understanding its shape, data types, and description. | |
- **Data Cleaning**: Clean the null values in the data using imputation methods to ensure accurate analysis. | |
- **Data Visualization**: Understand the underlying patterns of the data through univariate and bivariate analyses. | |
- **Outlier Detection**: Remove outliers that create biases in the results. | |
- **Data Transformation**: Apply transformations for better understanding and analysis of the data. | |
""") |