Data_Analysis / pages /RoadMap.py
corvo7's picture
Update pages/RoadMap.py (#8)
49a9165 verified
raw
history blame
9.62 kB
import streamlit as st
# Custom CSS to style the page with 3D features
st.markdown("""
<style>
.main {
background-color: #ffffff;
}
.center-image {
display: block;
margin-left: auto;
margin-right: auto;
width: 60%;
box-shadow: 10px 10px 30px rgba(0, 0, 0, 0.3);
border-radius: 15px;
margin-top: 20px;
}
.content {
color: #333333;
padding: 20px;
font-size: 18px;
box-shadow: 5px 5px 15px rgba(0, 0, 0, 0.2);
border-radius: 15px;
background: #f8f9fa;
margin-left: 20px;
margin-top: 20px;
}
.button {
font-size: 20px;
margin-bottom: 20px;
padding: 15px;
box-shadow: 3px 3px 10px rgba(0, 0, 0, 0.2);
border-radius: 10px;
background: #007bff;
color: white;
transition: transform 0.2s, background 0.2s;
border: none;
width: 100%;
text-align: left;
}
.button:hover {
box-shadow: 3px 3px 15px rgba(0, 0, 0, 0.3);
transform: scale(1.05);
cursor: pointer;
background: #0056b3;
}
.button:focus {
outline: none;
box-shadow: 6px 6px 15px rgba(0, 0, 0, 0.3);
transform: scale(1.05);
background: linear-gradient(to bottom, #003580, #002060);
}
</style>
""", unsafe_allow_html=True)
# Page title
st.title("Data Analysis Roadmap")
# Center image at the top
st.image("images/data_analysis.png", use_column_width='always')
# Two-column layout
col1, col2 = st.columns([1, 2])
# Left column with the buttons
with col1:
st.header("Topics")
selection = None
if st.button("Basic Python", key="basic_python"):
selection = "Basic Python"
if st.button("Intermediate Python", key="intermediate_python"):
selection = "Intermediate Python"
if st.button("Descriptive Statistics", key="descriptive_statistics"):
selection = "Descriptive Statistics"
if st.button("NumPy", key="numpy"):
selection = "NumPy"
if st.button("Pandas", key="pandas"):
selection = "Pandas"
if st.button("Matplotlib", key="matplotlib"):
selection = "Matplotlib"
if st.button("Seaborn", key="seaborn"):
selection = "Seaborn"
if st.button("Inferential Statistics", key="inferential_statistics"):
selection = "Inferential Statistics"
# Right column with the topic description
with col2:
if selection:
if selection == "Basic Python":
st.image("images/python_logo.png", width=50)
st.markdown("""
<div class='content'>
<b>Basic Python:</b>
<p>Basic Python covers the fundamental aspects of the Python programming language.</p>
<b>Subtopics:</b>
<ul>
<li>Syntax: Understanding the basic syntax and structure of Python code.</li>
<li>Data Types: Working with strings, lists, dictionaries, and tuples.</li>
<li>Control Flow: Using loops, conditionals, and functions.</li>
<li>File Handling: Reading from and writing to files.</li>
</ul>
<b>Example:</b>
<p>Writing simple programs to automate repetitive tasks, such as renaming files in bulk.</p>
</div>
""", unsafe_allow_html=True)
elif selection == "Intermediate Python":
st.image("images/python_logo.png", width=50)
st.markdown("""
<div class='content'>
<b>Intermediate Python:</b>
<p>Intermediate Python includes more advanced features of Python programming.</p>
<b>Subtopics:</b>
<ul>
<li>Modules and Packages: Importing and organizing code into modules.</li>
<li>List Comprehensions: Creating lists in a more readable way.</li>
<li>Error Handling: Using try, except blocks to handle errors.</li>
<li>Classes and Objects: Understanding object-oriented programming concepts.</li>
</ul>
<b>Example:</b>
<p>Building reusable code modules and handling exceptions in data processing scripts.</p>
</div>
""", unsafe_allow_html=True)
elif selection == "Descriptive Statistics":
st.image("images/statistics_logo.png", width=50)
st.markdown("""
<div class='content'>
<b>Descriptive Statistics:</b>
<p>Descriptive statistics summarize and describe the main features of a dataset.</p>
<b>Subtopics:</b>
<ul>
<li>Central Tendency: Mean, median, mode.</li>
<li>Dispersion: Variance, standard deviation, range.</li>
<li>Distribution: Quartiles, percentiles, histograms.</li>
</ul>
<b>Example:</b>
<p>Summarizing sales data to understand the average sales per month and the variability in sales.</p>
</div>
""", unsafe_allow_html=True)
elif selection == "NumPy":
st.image("images/numpy_logo.png", width=50)
st.markdown("""
<div class='content'>
<b>NumPy:</b>
<p>NumPy is a fundamental package for numerical computing in Python.</p>
<b>Subtopics:</b>
<ul>
<li>Arrays: Creating and manipulating arrays.</li>
<li>Mathematical Operations: Performing element-wise and matrix operations.</li>
<li>Statistical Functions: Using built-in functions for analysis.</li>
<li>Data Transformation: Reshaping and slicing arrays.</li>
</ul>
<b>Example:</b>
<p>Performing fast and efficient calculations on large datasets, such as computing the sum of all elements in an array.</p>
</div>
""", unsafe_allow_html=True)
elif selection == "Pandas":
st.image("images/pandas_logo.png", width=100)
st.markdown("""
<div class='content'>
<b>Pandas:</b>
<p>Pandas is a powerful library for data manipulation and analysis in Python.</p>
<b>Subtopics:</b>
<ul>
<li>DataFrames: Creating and manipulating DataFrames.</li>
<li>Data Cleaning: Handling missing values and duplicates.</li>
<li>Data Transformation: Merging, joining, and concatenating DataFrames.</li>
<li>Data Analysis: Grouping and aggregating data.</li>
</ul>
<b>Example:</b>
<p>Cleaning and analyzing sales data from different regions to find total sales per product category.</p>
</div>
""", unsafe_allow_html=True)
elif selection == "Matplotlib":
st.image("images/matplotlib_logo.png", width=100)
st.markdown("""
<div class='content'>
<b>Matplotlib:</b>
<p>Matplotlib is a plotting library for creating static, interactive, and animated visualizations in Python.</p>
<b>Subtopics:</b>
<ul>
<li>Basic Plots: Creating line, bar, and scatter plots.</li>
<li>Customization: Customizing plots with titles, labels, and legends.</li>
<li>Subplots: Creating multiple plots in a single figure.</li>
</ul>
<b>Example:</b>
<p>Visualizing sales trends over time with a line chart and customizing it to include titles and labels.</p>
</div>
""", unsafe_allow_html=True)
elif selection == "Seaborn":
st.image("images/seaborn_logo.png", width=100)
st.markdown("""
<div class='content'>
<b>Seaborn:</b>
<p>Seaborn is a data visualization library based on Matplotlib that provides a high-level interface for drawing attractive statistical graphics.</p>
<b>Subtopics:</b>
<ul>
<li>Statistical Plots: Creating plots like histograms, box plots, and violin plots.</li>
<li>Customization: Advanced customization of plots.</li>
<li>Integration: Seamless integration with pandas DataFrames.</li>
</ul>
<b>Example:</b>
<p>Creating a box plot to visualize the distribution of exam scores across different classes.</p>
</div>
""", unsafe_allow_html=True)
elif selection == "Inferential Statistics":
st.image("images/statistics_logo.png", width=50)
st.markdown("""
<div class='content'>
<b>Inferential Statistics:</b>
<p>Inferential statistics allow us to make predictions or inferences about a population based on a sample of data.</p>
<b>Subtopics:</b>
<ul>
<li>Hypothesis Testing: Determining the validity of assumptions.</li>
<li>Confidence Intervals: Estimating population parameters.</li>
<li>Regression Analysis: Modeling relationships between variables.</li>
<li>ANOVA and Chi-Square Tests: Comparing group means and categorical variables.</li>
</ul>
<b>Example:</b>
<p>Using regression analysis to predict future sales based on past data trends and conducting hypothesis tests to determine if a new marketing strategy significantly impacts sales.</p>
</div>
""", unsafe_allow_html=True)