Spaces:
Configuration error
Configuration error
File size: 1,419 Bytes
3d414e0 1b950dc 3d414e0 1b950dc 3d414e0 1b950dc 3d414e0 1b950dc 3d414e0 1b950dc 3d414e0 594a418 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import os
import gradio as gr
title = "Ask Rick a Question"
description = """
<center>
The bot was trained to answer questions based on Rick and Morty dialogues. Ask Rick anything!

</center>
"""
article = "Check out (the original Rick and Morty Bot)[https://huggingface.co/spaces/kingabzpro/Rick_and_Morty_Bot] that this demo is based off of."
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2")
model = AutoModelForCausalLM.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2")
def predict(input):
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
# convert the tokens to text, and then split the responses into the right format
response = tokenizer.decode(history[0]).split("<|endoftext|>")
return response[1]
gr.Interface(fn = predict, inputs = ["textbox"], outputs = ["text"],allow_flagging = "manual",title = title, description = description, article = article ).launch(enable_queue=True) # customizes the input component |