|
import argparse |
|
import torch |
|
import os |
|
import json |
|
import random |
|
import numpy as np |
|
from tqdm import tqdm |
|
import shortuuid |
|
|
|
from tinyllava.utils import * |
|
from tinyllava.data import * |
|
from tinyllava.model import * |
|
|
|
from PIL import Image |
|
import math |
|
|
|
|
|
def split_list(lst, n): |
|
"""Split a list into n (roughly) equal-sized chunks""" |
|
chunk_size = math.ceil(len(lst) / n) |
|
return [lst[i : i + chunk_size] for i in range(0, len(lst), chunk_size)] |
|
|
|
|
|
def get_chunk(lst, n, k): |
|
chunks = split_list(lst, n) |
|
return chunks[k] |
|
|
|
|
|
def parse_multi_choice_response(response, all_choices, index2ans): |
|
""" |
|
Parse the prediction from the generated response. |
|
Return the predicted index e.g., A, B, C, D. |
|
""" |
|
for char in [",", ".", "!", "?", ";", ":", "'"]: |
|
response = response.strip(char) |
|
response = " " + response + " " |
|
|
|
index_ans = True |
|
ans_with_brack = False |
|
candidates = [] |
|
for choice in all_choices: |
|
if f"({choice})" in response: |
|
candidates.append(choice) |
|
ans_with_brack = True |
|
|
|
if len(candidates) == 0: |
|
for choice in all_choices: |
|
if f" {choice} " in response: |
|
candidates.append(choice) |
|
|
|
|
|
if len(candidates) == 0 and len(response.split()) > 5: |
|
for index, ans in index2ans.items(): |
|
if ans.lower() in response.lower(): |
|
candidates.append(index) |
|
index_ans = False |
|
|
|
if len(candidates) == 0: |
|
pred_index = random.choice(all_choices) |
|
elif len(candidates) > 1: |
|
start_indexes = [] |
|
if index_ans: |
|
if ans_with_brack: |
|
for can in candidates: |
|
index = response.rfind(f"({can})") |
|
start_indexes.append(index) |
|
|
|
else: |
|
for can in candidates: |
|
index = response.rfind(f" {can} ") |
|
start_indexes.append(index) |
|
else: |
|
for can in candidates: |
|
index = response.lower().rfind(index2ans[can].lower()) |
|
start_indexes.append(index) |
|
|
|
pred_index = candidates[np.argmax(start_indexes)] |
|
else: |
|
pred_index = candidates[0] |
|
|
|
return pred_index |
|
|
|
|
|
def eval_model(args): |
|
|
|
disable_torch_init() |
|
model_path = os.path.expanduser(args.model_path) |
|
model, tokenizer, image_processor, context_len = load_pretrained_model(model_path) |
|
|
|
text_processor = TextPreprocess(tokenizer, args.conv_mode) |
|
data_args = model.config |
|
image_processor = ImagePreprocess(image_processor, data_args) |
|
|
|
questions = json.load(open(os.path.expanduser(args.question_file), "r")) |
|
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) |
|
answers_file = os.path.expanduser(args.answers_file) |
|
os.makedirs(os.path.dirname(answers_file), exist_ok=True) |
|
ans_file = open(answers_file, "w") |
|
model.to(device="cuda") |
|
for i, line in enumerate(tqdm(questions)): |
|
idx = line["id"] |
|
question = line["prompt"] |
|
|
|
if "image" in line: |
|
image_file = line["image"] |
|
|
|
image = Image.open(os.path.join(args.image_folder, image_file)).convert("RGB") |
|
image_sizes = [image.size] |
|
image = image_processor(image) |
|
images = image.unsqueeze(0).half().cuda() |
|
question = "<image>" + "\n" + question |
|
else: |
|
images = None |
|
image_sizes = None |
|
|
|
msg = Message() |
|
msg.add_message(question) |
|
|
|
|
|
result = text_processor(msg.messages, mode='eval') |
|
|
|
input_ids = result['input_ids'] |
|
input_ids = input_ids.unsqueeze(0).cuda() |
|
|
|
with torch.inference_mode(): |
|
if images is not None: |
|
output_ids = model.generate( |
|
input_ids, |
|
images=images, |
|
image_sizes=image_sizes, |
|
do_sample=True if args.temperature > 0 else False, |
|
temperature=args.temperature, |
|
max_new_tokens=1024, |
|
use_cache=True, |
|
pad_token_id=tokenizer.pad_token_id, |
|
) |
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] |
|
else: |
|
if line["question_type"] == "multiple-choice": |
|
all_choices = line["all_choices"] |
|
outputs = random.choice(all_choices) |
|
else: |
|
outputs = "INVALID GENERATION FOR MULTIPLE IMAGE INPUTS" |
|
|
|
if line["question_type"] == "multiple-choice": |
|
pred_ans = parse_multi_choice_response( |
|
outputs, line["all_choices"], line["index2ans"] |
|
) |
|
else: |
|
pred_ans = outputs |
|
|
|
|
|
|
|
ans_id = shortuuid.uuid() |
|
ans_file.write(json.dumps({"question_id": idx, |
|
"prompt": questions, |
|
"text": pred_ans, |
|
"answer_id": ans_id, |
|
"model_id": args.model_path.split("/")[-1], |
|
"metadata": {}}) + "\n") |
|
ans_file.flush() |
|
ans_file.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model-path", type=str, default="facebook/opt-350m") |
|
parser.add_argument("--model-base", type=str, default=None) |
|
parser.add_argument("--image-folder", type=str, default="") |
|
parser.add_argument("--question-file", type=str, default="tables/question.json") |
|
parser.add_argument("--answers-file", type=str, default="answer.jsonl") |
|
parser.add_argument("--conv-mode", type=str, default="llama") |
|
parser.add_argument("--num-chunks", type=int, default=1) |
|
parser.add_argument("--chunk-idx", type=int, default=0) |
|
parser.add_argument("--temperature", type=float, default=0.2) |
|
parser.add_argument("--answer-prompter", action="store_true") |
|
parser.add_argument("--image_aspect_ratio", type=str, default="pad") |
|
args = parser.parse_args() |
|
|
|
eval_model(args) |
|
|
|
|