Camil Ziane
init space
74b17e0
raw
history blame
6.73 kB
import argparse
import torch
import os
import json
import random
import numpy as np
from tqdm import tqdm
import shortuuid
from tinyllava.utils import *
from tinyllava.data import *
from tinyllava.model import *
from PIL import Image
import math
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i : i + chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def parse_multi_choice_response(response, all_choices, index2ans):
"""
Parse the prediction from the generated response.
Return the predicted index e.g., A, B, C, D.
"""
for char in [",", ".", "!", "?", ";", ":", "'"]:
response = response.strip(char)
response = " " + response + " " # add space to avoid partial match
index_ans = True
ans_with_brack = False
candidates = []
for choice in all_choices: # e.g., (A) (B) (C) (D)
if f"({choice})" in response:
candidates.append(choice)
ans_with_brack = True
if len(candidates) == 0:
for choice in all_choices: # e.g., A B C D
if f" {choice} " in response:
candidates.append(choice)
# if all above doesn't get candidates, check if the content is larger than 5 tokens and try to parse the example
if len(candidates) == 0 and len(response.split()) > 5:
for index, ans in index2ans.items():
if ans.lower() in response.lower():
candidates.append(index)
index_ans = False # it's content ans.
if len(candidates) == 0: # still not get answer, randomly choose one.
pred_index = random.choice(all_choices)
elif len(candidates) > 1:
start_indexes = []
if index_ans:
if ans_with_brack:
for can in candidates:
index = response.rfind(f"({can})")
start_indexes.append(index) # -1 will be ignored anyway
# start_indexes = [generated_response.index(f'({can})') for can in candidates]
else:
for can in candidates:
index = response.rfind(f" {can} ")
start_indexes.append(index)
else:
for can in candidates:
index = response.lower().rfind(index2ans[can].lower())
start_indexes.append(index)
# get the last one
pred_index = candidates[np.argmax(start_indexes)]
else: # if only one candidate, use it.
pred_index = candidates[0]
return pred_index
def eval_model(args):
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model, tokenizer, image_processor, context_len = load_pretrained_model(model_path)
text_processor = TextPreprocess(tokenizer, args.conv_mode)
data_args = model.config
image_processor = ImagePreprocess(image_processor, data_args)
questions = json.load(open(os.path.expanduser(args.question_file), "r"))
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
answers_file = os.path.expanduser(args.answers_file)
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
ans_file = open(answers_file, "w")
model.to(device="cuda")
for i, line in enumerate(tqdm(questions)):
idx = line["id"]
question = line["prompt"]
if "image" in line:
image_file = line["image"]
# image = Image.open(image_file).convert("RGB")
image = Image.open(os.path.join(args.image_folder, image_file)).convert("RGB")
image_sizes = [image.size]
image = image_processor(image)
images = image.unsqueeze(0).half().cuda()
question = "<image>" + "\n" + question
else:
images = None
image_sizes = None
msg = Message()
msg.add_message(question)
# print(msg.messages)
result = text_processor(msg.messages, mode='eval')
# print(result["prompt"])
input_ids = result['input_ids']
input_ids = input_ids.unsqueeze(0).cuda()
with torch.inference_mode():
if images is not None:
output_ids = model.generate(
input_ids,
images=images,
image_sizes=image_sizes,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
max_new_tokens=1024,
use_cache=True,
pad_token_id=tokenizer.pad_token_id,
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
else:
if line["question_type"] == "multiple-choice":
all_choices = line["all_choices"]
outputs = random.choice(all_choices)
else:
outputs = "INVALID GENERATION FOR MULTIPLE IMAGE INPUTS"
if line["question_type"] == "multiple-choice":
pred_ans = parse_multi_choice_response(
outputs, line["all_choices"], line["index2ans"]
)
else: # open question
pred_ans = outputs
# print(outputs, pred_ans)
ans_id = shortuuid.uuid()
ans_file.write(json.dumps({"question_id": idx,
"prompt": questions,
"text": pred_ans,
"answer_id": ans_id,
"model_id": args.model_path.split("/")[-1],
"metadata": {}}) + "\n")
ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-folder", type=str, default="")
parser.add_argument("--question-file", type=str, default="tables/question.json")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
parser.add_argument("--conv-mode", type=str, default="llama")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--answer-prompter", action="store_true")
parser.add_argument("--image_aspect_ratio", type=str, default="pad")
args = parser.parse_args()
eval_model(args)