Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from . import register_connector | |
from .base import Connector | |
import torch | |
from einops import rearrange, repeat | |
from einops_exts import rearrange_many | |
from torch import einsum | |
class PerceiverResampler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
dim = config.hidden_size | |
depth=config.num_resampler_layers | |
num_latents=config.num_queries | |
self.latents = nn.Parameter(torch.randn(num_latents, dim)) | |
self.layers = nn.ModuleList([]) | |
self.linear = nn.Linear(config.vision_hidden_size, config.hidden_size) | |
for _ in range(depth): | |
self.layers.append( | |
nn.ModuleList( | |
[ | |
PerceiverAttention(dim=dim, dim_head=64, heads=8), | |
FeedForward(dim=dim, mult=4), | |
] | |
) | |
) | |
self.norm = nn.LayerNorm(dim) | |
def forward(self, x): | |
b, v = x.shape[:2] | |
x = self.linear(x) | |
# blocks | |
latents = repeat(self.latents, "n d -> b T n d", b=b, T=1) | |
x = x.unsqueeze(1) | |
for attn, ff in self.layers: | |
latents = attn(x, latents) + latents | |
latents = ff(latents) + latents | |
return self.norm(latents).squeeze(1) | |
class ResamplerConnector(Connector): | |
def __init__(self, config): | |
super().__init__() | |
self._connector = PerceiverResampler(config) | |
# =================================resampler related ================================= | |
def exists(val): | |
return val is not None | |
def FeedForward(dim, mult=4): | |
inner_dim = int(dim * mult) | |
return nn.Sequential( | |
nn.LayerNorm(dim), | |
nn.Linear(dim, inner_dim, bias=False), | |
nn.GELU(), | |
nn.Linear(inner_dim, dim, bias=False), | |
) | |
class PerceiverAttention(nn.Module): | |
def __init__(self, *, dim, dim_head=64, heads=8): | |
super().__init__() | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
inner_dim = dim_head * heads | |
self.norm_media = nn.LayerNorm(dim) | |
self.norm_latents = nn.LayerNorm(dim) | |
self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | |
self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
def forward(self, x, latents): | |
""" | |
Args: | |
x (torch.Tensor): image features | |
shape (b, T, n1, D) | |
latent (torch.Tensor): latent features | |
shape (b, T, n2, D) | |
""" | |
x = self.norm_media(x) | |
latents = self.norm_latents(latents) | |
h = self.heads | |
q = self.to_q(latents) | |
kv_input = torch.cat((x, latents), dim=-2) | |
k, v = self.to_kv(kv_input).chunk(2, dim=-1) | |
q, k, v = rearrange_many((q, k, v), "b t n (h d) -> b h t n d", h=h) | |
q = q * self.scale | |
# attention | |
sim = einsum("... i d, ... j d -> ... i j", q, k) | |
sim = sim - sim.amax(dim=-1, keepdim=True).detach() | |
attn = sim.softmax(dim=-1) | |
out = einsum("... i j, ... j d -> ... i d", attn, v) | |
out = rearrange(out, "b h t n d -> b t n (h d)", h=h) | |
return self.to_out(out) | |