Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,792 Bytes
db6a3b7 3057b36 7d475c1 db6a3b7 cd41f5f 690b53e db6a3b7 9880f3d 7d475c1 db6a3b7 9880f3d db6a3b7 9880f3d db6a3b7 c260ece bd46f72 cd41f5f d7b1815 c260ece cd41f5f c260ece cd41f5f c260ece db6a3b7 db894f7 cd41f5f db6a3b7 c260ece a898014 9880f3d a898014 9880f3d c260ece 9880f3d a898014 9880f3d c260ece cd41f5f c260ece cd41f5f c260ece 3057b36 cd41f5f db6a3b7 cd41f5f bd46f72 c260ece db6a3b7 c260ece db6a3b7 cd41f5f db894f7 cd41f5f db894f7 bd46f72 7d475c1 15fe7bc a898014 cd41f5f 7d475c1 a898014 cd41f5f 9880f3d db6a3b7 c260ece 3057b36 cd41f5f 4241cf4 db6a3b7 9880f3d db6a3b7 c260ece db6a3b7 4241cf4 db6a3b7 cd41f5f a898014 690b53e cd41f5f db6a3b7 4241cf4 cd41f5f 4241cf4 db6a3b7 c260ece 4241cf4 c260ece 4241cf4 c260ece 4241cf4 c260ece 4241cf4 c260ece cd41f5f 7d475c1 c260ece 7d475c1 c260ece 7d475c1 c260ece db6a3b7 c260ece bd46f72 c260ece bd46f72 c260ece bd46f72 c260ece bd46f72 c260ece bd46f72 c260ece bd46f72 c260ece bd46f72 c260ece db6a3b7 c260ece db6a3b7 c260ece 0b2d68e c260ece 0b2d68e c260ece 2e78ab8 4241cf4 db6a3b7 c260ece db6a3b7 2e7f188 cd41f5f db6a3b7 c260ece cd41f5f c260ece db6a3b7 cd41f5f db6a3b7 c260ece db6a3b7 cd41f5f db6a3b7 c260ece 2e78ab8 db6a3b7 0b2d68e c260ece db6a3b7 c260ece db6a3b7 2e78ab8 4241cf4 db6a3b7 0b2d68e db6a3b7 c260ece 4241cf4 c260ece 4241cf4 c260ece 0b2d68e c260ece db6a3b7 c260ece db6a3b7 c260ece db6a3b7 c260ece db6a3b7 c666caf db6a3b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
# Constants
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
# Session Management Functions
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
print(f'Creating user directory: {user_dir}')
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
print(f'Removing user directory: {user_dir}')
shutil.rmtree(user_dir)
# Image Preprocessing Function
def preprocess_image(image: Image.Image) -> Image.Image:
"""
Preprocess the input image.
Args:
image (Image.Image): The input image.
Returns:
Image.Image: The preprocessed image.
"""
processed_image = pipeline.preprocess_image(image)
return processed_image
# State Packing and Unpacking Functions
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
# Seed Management Function
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed.
Args:
randomize_seed (bool): Whether to randomize the seed.
seed (int): The provided seed value.
Returns:
int: The final seed to use.
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
# Core 3D Generation Function
@spaces.GPU
def image_to_3d(
image: Image.Image,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, str]:
"""
Convert an image to a 3D model.
Args:
image (Image.Image): The input image.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
req (gr.Request): Gradio request object.
Returns:
Tuple[dict, str]: The state dictionary and the path to the generated video.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
outputs = pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
trial_id = uuid.uuid4()
video_path = os.path.join(user_dir, f"{trial_id}.mp4")
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
torch.cuda.empty_cache()
return state, video_path
# Existing GLB Extraction Function
@spaces.GPU
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[dict, bytes]:
"""
Extract a GLB file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
req (gr.Request): Gradio request object.
Returns:
Tuple[dict, bytes]: The model state and the GLB file bytes.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, mesh, trial_id = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, f"{trial_id}.glb")
glb.export(glb_path)
# Read the GLB file as bytes
with open(glb_path, "rb") as f:
glb_bytes = f.read()
torch.cuda.empty_cache()
return state, glb_bytes
# New High-Quality GLB Extraction Function
@spaces.GPU
def extract_glb_high_quality(
state: dict,
req: gr.Request,
) -> Tuple[dict, bytes]:
"""
Extract a high-quality GLB file from the 3D model without polygon reduction.
Args:
state (dict): The state of the generated 3D model.
req (gr.Request): Gradio request object.
Returns:
Tuple[dict, bytes]: The model state and the high-quality GLB file bytes.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, mesh, trial_id = unpack_state(state)
# Set simplify to 0.0 to disable polygon reduction
# Set texture_size to 2048 for maximum texture quality
glb = postprocessing_utils.to_glb(gs, mesh, simplify=0.0, texture_size=2048, verbose=False)
glb_path = os.path.join(user_dir, f"{trial_id}_high_quality.glb")
glb.export(glb_path)
# Read the GLB file as bytes
with open(glb_path, "rb") as f:
glb_bytes = f.read()
torch.cuda.empty_cache()
return state, glb_bytes
# Gradio Interface Definition
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
* Upload an image and click "Generate" to create a 3D asset. If the image has an alpha channel, it will be used as the mask. Otherwise, the background will be removed automatically.
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
* **New:** Click "Download High Quality GLB" to download the GLB file without any polygon reduction and with maximum texture quality.
""")
with gr.Row():
with gr.Column():
# Image Input
image_prompt = gr.Image(
label="Image Prompt",
format="png",
image_mode="RGBA",
type="pil",
height=300
)
# Generation Settings Accordion
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(
0,
MAX_SEED,
label="Seed",
value=0,
step=1
)
randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=True
)
gr.Markdown("### Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(
0.0,
10.0,
label="Guidance Strength",
value=7.5,
step=0.1
)
ss_sampling_steps = gr.Slider(
1,
500,
label="Sampling Steps",
value=12,
step=1
)
gr.Markdown("### Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(
0.0,
10.0,
label="Guidance Strength",
value=3.0,
step=0.1
)
slat_sampling_steps = gr.Slider(
1,
500,
label="Sampling Steps",
value=12,
step=1
)
# Generate Button
generate_btn = gr.Button("Generate")
# GLB Extraction Settings Accordion
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(
0.0,
0.98,
label="Simplify",
value=0.95,
step=0.01
)
texture_size = gr.Slider(
512,
2048,
label="Texture Size",
value=1024,
step=512
)
# Existing Extract GLB Button
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
# New Extract High Quality GLB Button
extract_glb_high_quality_btn = gr.Button("Download High Quality GLB", interactive=False)
with gr.Column():
# Video Output
video_output = gr.Video(
label="Generated 3D Asset",
autoplay=True,
loop=True,
height=300
)
# 3D Model Display
model_output = LitModel3D(
label="Extracted GLB",
exposure=20.0,
height=300
)
# Existing Download GLB Button
download_glb = gr.DownloadButton(
label="Download GLB",
interactive=False # Initially disabled
)
# New Download High Quality GLB Button
download_high_quality_glb = gr.DownloadButton(
label="Download High Quality GLB",
interactive=False # Initially disabled
)
# State Variables
output_buf = gr.State()
glb_bytes_state = gr.State() # For standard GLB
glb_high_quality_bytes_state = gr.State() # For high-quality GLB
# Example Images
with gr.Row():
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_image,
outputs=[image_prompt],
run_on_click=True,
examples_per_page=64,
)
# Event Handlers
demo.load(start_session)
demo.unload(end_session)
# Image Upload Handler
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[image_prompt],
)
# Generate Button Click Handler
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
image_to_3d,
inputs=[
image_prompt,
seed,
ss_guidance_strength,
ss_sampling_steps,
slat_guidance_strength,
slat_sampling_steps
],
outputs=[output_buf, video_output],
).then(
lambda: (gr.Button.update(interactive=True), gr.Button.update(interactive=True)),
outputs=[extract_glb_btn, extract_glb_high_quality_btn],
)
# Existing Extract GLB Button Click Handler
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, glb_bytes_state],
).then(
lambda glb_bytes: (glb_bytes, ),
inputs=[glb_bytes_state],
outputs=[download_glb],
).then(
lambda: gr.DownloadButton.update(interactive=True),
outputs=[download_glb],
)
# New Extract High Quality GLB Button Click Handler
extract_glb_high_quality_btn.click(
extract_glb_high_quality,
inputs=[output_buf],
outputs=[model_output, glb_high_quality_bytes_state],
).then(
lambda glb_bytes: (glb_bytes, ),
inputs=[glb_high_quality_bytes_state],
outputs=[download_high_quality_glb],
).then(
lambda: gr.DownloadButton.update(interactive=True),
outputs=[download_high_quality_glb],
)
# Handle Clearing of Video Output
video_output.clear(
lambda: (gr.Button.update(interactive=False), gr.Button.update(interactive=False)),
outputs=[extract_glb_btn, extract_glb_high_quality_btn],
)
# Handle Clearing of Model Output
model_output.clear(
lambda: (gr.File.update(value=None), gr.File.update(value=None)),
outputs=[download_glb, download_high_quality_glb],
)
# Launch the Gradio app
if __name__ == "__main__":
# Initialize the pipeline
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline.cuda()
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
except:
pass
demo.launch()
|