Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from gradio_litmodel3d import LitModel3D | |
import os | |
import shutil | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
import uuid | |
from easydict import EasyDict as edict | |
from PIL import Image | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
# Constants | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
# Session Management Functions | |
def start_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
print(f'Creating user directory: {user_dir}') | |
os.makedirs(user_dir, exist_ok=True) | |
def end_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
print(f'Removing user directory: {user_dir}') | |
shutil.rmtree(user_dir) | |
# Image Preprocessing Function | |
def preprocess_image(image: Image.Image) -> Image.Image: | |
""" | |
Preprocess the input image. | |
Args: | |
image (Image.Image): The input image. | |
Returns: | |
Image.Image: The preprocessed image. | |
""" | |
processed_image = pipeline.preprocess_image(image) | |
return processed_image | |
# State Packing and Unpacking Functions | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
'trial_id': trial_id, | |
} | |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
return gs, mesh, state['trial_id'] | |
# Seed Management Function | |
def get_seed(randomize_seed: bool, seed: int) -> int: | |
""" | |
Get the random seed. | |
Args: | |
randomize_seed (bool): Whether to randomize the seed. | |
seed (int): The provided seed value. | |
Returns: | |
int: The final seed to use. | |
""" | |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
# Core 3D Generation Function | |
def image_to_3d( | |
image: Image.Image, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
req: gr.Request, | |
) -> Tuple[dict, str]: | |
""" | |
Convert an image to a 3D model. | |
Args: | |
image (Image.Image): The input image. | |
seed (int): The random seed. | |
ss_guidance_strength (float): The guidance strength for sparse structure generation. | |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation. | |
slat_guidance_strength (float): The guidance strength for structured latent generation. | |
slat_sampling_steps (int): The number of sampling steps for structured latent generation. | |
req (gr.Request): Gradio request object. | |
Returns: | |
Tuple[dict, str]: The state dictionary and the path to the generated video. | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
outputs = pipeline.run( | |
image, | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
trial_id = uuid.uuid4() | |
video_path = os.path.join(user_dir, f"{trial_id}.mp4") | |
imageio.mimsave(video_path, video, fps=15) | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id) | |
torch.cuda.empty_cache() | |
return state, video_path | |
# Existing GLB Extraction Function | |
def extract_glb( | |
state: dict, | |
mesh_simplify: float, | |
texture_size: int, | |
req: gr.Request, | |
) -> Tuple[dict, bytes]: | |
""" | |
Extract a GLB file from the 3D model. | |
Args: | |
state (dict): The state of the generated 3D model. | |
mesh_simplify (float): The mesh simplification factor. | |
texture_size (int): The texture resolution. | |
req (gr.Request): Gradio request object. | |
Returns: | |
Tuple[dict, bytes]: The model state and the GLB file bytes. | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
gs, mesh, trial_id = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = os.path.join(user_dir, f"{trial_id}.glb") | |
glb.export(glb_path) | |
# Read the GLB file as bytes | |
with open(glb_path, "rb") as f: | |
glb_bytes = f.read() | |
torch.cuda.empty_cache() | |
return state, glb_bytes | |
# New High-Quality GLB Extraction Function | |
def extract_glb_high_quality( | |
state: dict, | |
req: gr.Request, | |
) -> Tuple[dict, bytes]: | |
""" | |
Extract a high-quality GLB file from the 3D model without polygon reduction. | |
Args: | |
state (dict): The state of the generated 3D model. | |
req (gr.Request): Gradio request object. | |
Returns: | |
Tuple[dict, bytes]: The model state and the high-quality GLB file bytes. | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
gs, mesh, trial_id = unpack_state(state) | |
# Set simplify to 0.0 to disable polygon reduction | |
# Set texture_size to 2048 for maximum texture quality | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=0.0, texture_size=2048, verbose=False) | |
glb_path = os.path.join(user_dir, f"{trial_id}_high_quality.glb") | |
glb.export(glb_path) | |
# Read the GLB file as bytes | |
with open(glb_path, "rb") as f: | |
glb_bytes = f.read() | |
torch.cuda.empty_cache() | |
return state, glb_bytes | |
# Gradio Interface Definition | |
with gr.Blocks(delete_cache=(600, 600)) as demo: | |
gr.Markdown(""" | |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/) | |
* Upload an image and click "Generate" to create a 3D asset. If the image has an alpha channel, it will be used as the mask. Otherwise, the background will be removed automatically. | |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it. | |
* **New:** Click "Download High Quality GLB" to download the GLB file without any polygon reduction and with maximum texture quality. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
# Image Input | |
image_prompt = gr.Image( | |
label="Image Prompt", | |
format="png", | |
image_mode="RGBA", | |
type="pil", | |
height=300 | |
) | |
# Generation Settings Accordion | |
with gr.Accordion(label="Generation Settings", open=False): | |
seed = gr.Slider( | |
0, | |
MAX_SEED, | |
label="Seed", | |
value=0, | |
step=1 | |
) | |
randomize_seed = gr.Checkbox( | |
label="Randomize Seed", | |
value=True | |
) | |
gr.Markdown("### Stage 1: Sparse Structure Generation") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider( | |
0.0, | |
10.0, | |
label="Guidance Strength", | |
value=7.5, | |
step=0.1 | |
) | |
ss_sampling_steps = gr.Slider( | |
1, | |
500, | |
label="Sampling Steps", | |
value=12, | |
step=1 | |
) | |
gr.Markdown("### Stage 2: Structured Latent Generation") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider( | |
0.0, | |
10.0, | |
label="Guidance Strength", | |
value=3.0, | |
step=0.1 | |
) | |
slat_sampling_steps = gr.Slider( | |
1, | |
500, | |
label="Sampling Steps", | |
value=12, | |
step=1 | |
) | |
# Generate Button | |
generate_btn = gr.Button("Generate") | |
# GLB Extraction Settings Accordion | |
with gr.Accordion(label="GLB Extraction Settings", open=False): | |
mesh_simplify = gr.Slider( | |
0.0, | |
0.98, | |
label="Simplify", | |
value=0.95, | |
step=0.01 | |
) | |
texture_size = gr.Slider( | |
512, | |
2048, | |
label="Texture Size", | |
value=1024, | |
step=512 | |
) | |
# Existing Extract GLB Button | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
# New Extract High Quality GLB Button | |
extract_glb_high_quality_btn = gr.Button("Download High Quality GLB", interactive=False) | |
with gr.Column(): | |
# Video Output | |
video_output = gr.Video( | |
label="Generated 3D Asset", | |
autoplay=True, | |
loop=True, | |
height=300 | |
) | |
# 3D Model Display | |
model_output = LitModel3D( | |
label="Extracted GLB", | |
exposure=20.0, | |
height=300 | |
) | |
# Existing Download GLB Button | |
download_glb = gr.DownloadButton( | |
label="Download GLB", | |
interactive=False # Initially disabled | |
) | |
# New Download High Quality GLB Button | |
download_high_quality_glb = gr.DownloadButton( | |
label="Download High Quality GLB", | |
interactive=False # Initially disabled | |
) | |
# State Variables | |
output_buf = gr.State() | |
glb_bytes_state = gr.State() # For standard GLB | |
glb_high_quality_bytes_state = gr.State() # For high-quality GLB | |
# Example Images | |
with gr.Row(): | |
examples = gr.Examples( | |
examples=[ | |
f'assets/example_image/{image}' | |
for image in os.listdir("assets/example_image") | |
], | |
inputs=[image_prompt], | |
fn=preprocess_image, | |
outputs=[image_prompt], | |
run_on_click=True, | |
examples_per_page=64, | |
) | |
# Event Handlers | |
demo.load(start_session) | |
demo.unload(end_session) | |
# Image Upload Handler | |
image_prompt.upload( | |
preprocess_image, | |
inputs=[image_prompt], | |
outputs=[image_prompt], | |
) | |
# Generate Button Click Handler | |
generate_btn.click( | |
get_seed, | |
inputs=[randomize_seed, seed], | |
outputs=[seed], | |
).then( | |
image_to_3d, | |
inputs=[ | |
image_prompt, | |
seed, | |
ss_guidance_strength, | |
ss_sampling_steps, | |
slat_guidance_strength, | |
slat_sampling_steps | |
], | |
outputs=[output_buf, video_output], | |
).then( | |
lambda: (gr.Button.update(interactive=True), gr.Button.update(interactive=True)), | |
outputs=[extract_glb_btn, extract_glb_high_quality_btn], | |
) | |
# Existing Extract GLB Button Click Handler | |
extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], | |
outputs=[model_output, glb_bytes_state], | |
).then( | |
lambda glb_bytes: (glb_bytes, ), | |
inputs=[glb_bytes_state], | |
outputs=[download_glb], | |
).then( | |
lambda: gr.DownloadButton.update(interactive=True), | |
outputs=[download_glb], | |
) | |
# New Extract High Quality GLB Button Click Handler | |
extract_glb_high_quality_btn.click( | |
extract_glb_high_quality, | |
inputs=[output_buf], | |
outputs=[model_output, glb_high_quality_bytes_state], | |
).then( | |
lambda glb_bytes: (glb_bytes, ), | |
inputs=[glb_high_quality_bytes_state], | |
outputs=[download_high_quality_glb], | |
).then( | |
lambda: gr.DownloadButton.update(interactive=True), | |
outputs=[download_high_quality_glb], | |
) | |
# Handle Clearing of Video Output | |
video_output.clear( | |
lambda: (gr.Button.update(interactive=False), gr.Button.update(interactive=False)), | |
outputs=[extract_glb_btn, extract_glb_high_quality_btn], | |
) | |
# Handle Clearing of Model Output | |
model_output.clear( | |
lambda: (gr.File.update(value=None), gr.File.update(value=None)), | |
outputs=[download_glb, download_high_quality_glb], | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
# Initialize the pipeline | |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") | |
pipeline.cuda() | |
try: | |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg | |
except: | |
pass | |
demo.launch() | |