|
## How do I use this model on an image? |
|
To load a pretrained model: |
|
|
|
```python |
|
import timm |
|
model = timm.create_model('{{ model_name }}', pretrained=True) |
|
model.eval() |
|
``` |
|
|
|
To load and preprocess the image: |
|
```python |
|
import urllib |
|
from PIL import Image |
|
from timm.data import resolve_data_config |
|
from timm.data.transforms_factory import create_transform |
|
|
|
config = resolve_data_config({}, model=model) |
|
transform = create_transform(**config) |
|
|
|
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") |
|
urllib.request.urlretrieve(url, filename) |
|
img = Image.open(filename).convert('RGB') |
|
tensor = transform(img).unsqueeze(0) # transform and add batch dimension |
|
``` |
|
|
|
To get the model predictions: |
|
```python |
|
import torch |
|
with torch.no_grad(): |
|
out = model(tensor) |
|
probabilities = torch.nn.functional.softmax(out[0], dim=0) |
|
print(probabilities.shape) |
|
# prints: torch.Size([1000]) |
|
``` |
|
|
|
To get the top-5 predictions class names: |
|
```python |
|
# Get imagenet class mappings |
|
url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") |
|
urllib.request.urlretrieve(url, filename) |
|
with open("imagenet_classes.txt", "r") as f: |
|
categories = [s.strip() for s in f.readlines()] |
|
|
|
# Print top categories per image |
|
top5_prob, top5_catid = torch.topk(probabilities, 5) |
|
for i in range(top5_prob.size(0)): |
|
print(categories[top5_catid[i]], top5_prob[i].item()) |
|
# prints class names and probabilities like: |
|
# [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] |
|
``` |
|
|
|
Replace the model name with the variant you want to use, e.g. `{{ model_name }}`. You can find the IDs in the model summaries at the top of this page. |
|
|
|
To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. |
|
|
|
## How do I finetune this model? |
|
You can finetune any of the pre-trained models just by changing the classifier (the last layer). |
|
```python |
|
model = timm.create_model('{{ model_name }}', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) |
|
``` |
|
To finetune on your own dataset, you have to write a training loop or adapt [timm's training |
|
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. |
|
|