CrispChat / app.py
cstr's picture
Update app.py
37f5ab3 verified
raw
history blame
20.6 kB
import os
import gradio as gr
import requests
import json
import base64
from PIL import Image
import io
import logging
import PyPDF2
import markdown
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# API key
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
# Model list with context sizes - organized by category
MODELS = [
# Vision Models
{"category": "Vision", "models": [
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
("Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
("Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
("Qwen2.5 VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
("Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
]},
# Gemini Models
{"category": "Gemini", "models": [
("Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
("Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
("Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
("LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
]},
# Llama Models
{"category": "Llama", "models": [
("Llama 3.3 70B Instruct", "meta-llama/llama-3.3-70b-instruct:free", 8000),
("Llama 3.2 3B Instruct", "meta-llama/llama-3.2-3b-instruct:free", 20000),
("Llama 3.2 1B Instruct", "meta-llama/llama-3.2-1b-instruct:free", 131072),
("Llama 3.1 8B Instruct", "meta-llama/llama-3.1-8b-instruct:free", 131072),
("Llama 3 8B Instruct", "meta-llama/llama-3-8b-instruct:free", 8192),
("Llama 3.1 Nemotron 70B Instruct", "nvidia/llama-3.1-nemotron-70b-instruct:free", 131072),
]},
# DeepSeek Models
{"category": "DeepSeek", "models": [
("DeepSeek R1 Zero", "deepseek/deepseek-r1-zero:free", 163840),
("DeepSeek R1", "deepseek/deepseek-r1:free", 163840),
("DeepSeek V3 Base", "deepseek/deepseek-v3-base:free", 131072),
("DeepSeek V3 0324", "deepseek/deepseek-v3-0324:free", 131072),
("DeepSeek V3", "deepseek/deepseek-chat:free", 131072),
("DeepSeek R1 Distill Qwen 14B", "deepseek/deepseek-r1-distill-qwen-14b:free", 64000),
("DeepSeek R1 Distill Qwen 32B", "deepseek/deepseek-r1-distill-qwen-32b:free", 16000),
("DeepSeek R1 Distill Llama 70B", "deepseek/deepseek-r1-distill-llama-70b:free", 8192),
]},
# Other Popular Models
{"category": "Other Popular Models", "models": [
("Mistral Nemo", "mistralai/mistral-nemo:free", 128000),
("Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
("Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
("Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
("Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
("DeepHermes 3 Llama 3 8B Preview", "nousresearch/deephermes-3-llama-3-8b-preview:free", 131072),
("Qwen2.5 72B Instruct", "qwen/qwen-2.5-72b-instruct:free", 32768),
]},
# Smaller Models (<50B params)
{"category": "Smaller Models", "models": [
("Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
("Gemma 2 9B", "google/gemma-2-9b-it:free", 8192),
("Mistral 7B Instruct", "mistralai/mistral-7b-instruct:free", 8192),
("Qwen 2 7B Instruct", "qwen/qwen-2-7b-instruct:free", 8192),
("Phi-3 Mini 128K Instruct", "microsoft/phi-3-mini-128k-instruct:free", 8192),
("Phi-3 Medium 128K Instruct", "microsoft/phi-3-medium-128k-instruct:free", 8192),
("OpenChat 3.5 7B", "openchat/openchat-7b:free", 8192),
("Zephyr 7B", "huggingfaceh4/zephyr-7b-beta:free", 4096),
("MythoMax 13B", "gryphe/mythomax-l2-13b:free", 4096),
]},
]
# Flatten model list for easy searching
ALL_MODELS = []
for category in MODELS:
for model in category["models"]:
ALL_MODELS.append(model)
def format_to_message_dict(history):
"""Convert history to proper message format"""
messages = []
for pair in history:
if len(pair) == 2:
human, ai = pair
if human:
messages.append({"role": "user", "content": human})
if ai:
messages.append({"role": "assistant", "content": ai})
return messages
def encode_image_to_base64(image_path):
"""Encode an image file to base64 string"""
try:
if isinstance(image_path, str): # File path as string
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
file_extension = image_path.split('.')[-1].lower()
mime_type = f"image/{file_extension}"
if file_extension == "jpg" or file_extension == "jpeg":
mime_type = "image/jpeg"
return f"data:{mime_type};base64,{encoded_string}"
else: # Pillow Image or file-like object
buffered = io.BytesIO()
image_path.save(buffered, format="PNG")
encoded_string = base64.b64encode(buffered.getvalue()).decode('utf-8')
return f"data:image/png;base64,{encoded_string}"
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
return None
def extract_text_from_file(file_path):
"""Extract text from various file types"""
try:
file_extension = file_path.split('.')[-1].lower()
if file_extension == 'pdf':
text = ""
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text() + "\n\n"
return text
elif file_extension == 'md':
with open(file_path, 'r', encoding='utf-8') as file:
md_text = file.read()
# You can convert markdown to plain text if needed
return md_text
elif file_extension == 'txt':
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
else:
return f"Unsupported file type: {file_extension}"
except Exception as e:
logger.error(f"Error extracting text from file: {str(e)}")
return f"Error processing file: {str(e)}"
def prepare_message_with_media(text, images=None, documents=None):
"""Prepare a message with text, images, and document content"""
# If no media, return text only
if not images and not documents:
return text
# Start with text content
if documents and len(documents) > 0:
# If there are documents, append their content to the text
document_texts = []
for doc in documents:
if doc is None:
continue
doc_text = extract_text_from_file(doc)
if doc_text:
document_texts.append(doc_text)
# Add document content to text
if document_texts:
if not text:
text = "Please analyze these documents:"
else:
text = f"{text}\n\nDocument content:\n\n"
text += "\n\n".join(document_texts)
# If no images, return text only
if not images:
return text
# If we have images, create a multimodal content array
content = [{"type": "text", "text": text}]
# Add images if any
if images:
for img in images:
if img is None:
continue
encoded_image = encode_image_to_base64(img)
if encoded_image:
content.append({
"type": "image_url",
"image_url": {"url": encoded_image}
})
return content
def ask_ai(message, chatbot, model_choice, temperature, max_tokens, top_p, frequency_penalty,
presence_penalty, images, documents, reasoning_effort):
"""Enhanced AI query function with comprehensive options"""
if not message.strip() and not images and not documents:
return chatbot, ""
# Get model ID and context size
model_id = None
context_size = 0
for name, model_id_value, ctx_size in ALL_MODELS:
if name == model_choice:
model_id = model_id_value
context_size = ctx_size
break
if model_id is None:
logger.error(f"Model not found: {model_choice}")
return chatbot + [[message, "Error: Model not found"]], ""
# Create messages from chatbot history
messages = format_to_message_dict(chatbot)
# Prepare message with images and documents if any
content = prepare_message_with_media(message, images, documents)
# Add current message
messages.append({"role": "user", "content": content})
# Call API
try:
logger.info(f"Sending request to model: {model_id}")
# Build the payload with all parameters
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
"presence_penalty": presence_penalty
}
# Add reasoning if selected
if reasoning_effort != "none":
payload["reasoning"] = {
"effort": reasoning_effort
}
logger.info(f"Request payload: {json.dumps(payload, default=str)}")
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces"
},
json=payload,
timeout=120 # Longer timeout for document processing
)
logger.info(f"Response status: {response.status_code}")
response_text = response.text
logger.info(f"Response body: {response_text}")
if response.status_code == 200:
result = response.json()
ai_response = result.get("choices", [{}])[0].get("message", {}).get("content", "")
chatbot = chatbot + [[message, ai_response]]
# Log token usage if available
if "usage" in result:
logger.info(f"Token usage: {result['usage']}")
else:
error_message = f"Error: Status code {response.status_code}\n\nResponse: {response_text}"
chatbot = chatbot + [[message, error_message]]
except Exception as e:
logger.error(f"Exception during API call: {str(e)}")
chatbot = chatbot + [[message, f"Error: {str(e)}"]]
return chatbot, ""
def clear_chat():
return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, "none"
def filter_models(search_term):
"""Filter models based on search term"""
if not search_term:
return gr.Dropdown.update(choices=[model[0] for model in ALL_MODELS], value=ALL_MODELS[0][0])
filtered_models = [model[0] for model in ALL_MODELS if search_term.lower() in model[0].lower()]
if filtered_models:
return gr.Dropdown.update(choices=filtered_models, value=filtered_models[0])
else:
return gr.Dropdown.update(choices=[model[0] for model in ALL_MODELS], value=ALL_MODELS[0][0])
def get_model_info(model_name):
"""Get model information by name"""
for model in ALL_MODELS:
if model[0] == model_name:
return model
return None
def update_context_display(model_name):
"""Update the context size display based on the selected model"""
model_info = get_model_info(model_name)
if model_info:
name, model_id, context_size = model_info
context_formatted = f"{context_size:,}"
return f"{context_formatted} tokens"
return "Unknown"
# Create enhanced interface
with gr.Blocks(css="""
.context-size {
font-size: 0.9em;
color: #666;
margin-left: 10px;
}
footer { display: none !important; }
.model-selection-row {
display: flex;
align-items: center;
}
.parameter-grid {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 10px;
}
""") as demo:
gr.Markdown("""
# Enhanced AI Chat
Chat with various AI models from OpenRouter with support for images and documents.
""")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
show_label=False,
avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg")
)
with gr.Row():
message = gr.Textbox(
placeholder="Type your message here...",
label="Message",
lines=2
)
with gr.Row():
with gr.Column(scale=3):
submit_btn = gr.Button("Send", variant="primary")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear Chat", variant="secondary")
with gr.Row():
# Image upload
with gr.Accordion("Upload Images (for vision models)", open=False):
images = gr.Gallery(
label="Uploaded Images",
show_label=True,
columns=4,
height="auto",
object_fit="contain"
)
image_upload_btn = gr.UploadButton(
label="Upload Images",
file_types=["image"],
file_count="multiple"
)
# Document upload
with gr.Accordion("Upload Documents (PDF, MD, TXT)", open=False):
documents = gr.File(
label="Uploaded Documents",
file_types=[".pdf", ".md", ".txt"],
file_count="multiple"
)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Model Selection")
with gr.Row(elem_classes="model-selection-row"):
model_search = gr.Textbox(
placeholder="Search models...",
label="",
show_label=False
)
with gr.Row(elem_classes="model-selection-row"):
model_choice = gr.Dropdown(
[model[0] for model in ALL_MODELS],
value=ALL_MODELS[0][0],
label="Model"
)
context_display = gr.Textbox(
value=update_context_display(ALL_MODELS[0][0]),
label="Context",
interactive=False,
elem_classes="context-size"
)
# Model category selection
with gr.Accordion("Browse by Category", open=False):
model_categories = gr.Radio(
[category["category"] for category in MODELS],
label="Categories",
value=MODELS[0]["category"]
)
category_models = gr.Radio(
[model[0] for model in MODELS[0]["models"]],
label="Models in Category"
)
with gr.Accordion("Generation Parameters", open=False):
with gr.Group(elem_classes="parameter-grid"):
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=100,
maximum=4000,
value=1000,
step=100,
label="Max Tokens"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.8,
step=0.1,
label="Top P"
)
frequency_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
presence_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Presence Penalty"
)
reasoning_effort = gr.Radio(
["none", "low", "medium", "high"],
value="none",
label="Reasoning Effort"
)
# Connect model search to dropdown filter
model_search.change(
fn=filter_models,
inputs=[model_search],
outputs=[model_choice]
)
# Update context display when model changes
model_choice.change(
fn=update_context_display,
inputs=[model_choice],
outputs=[context_display]
)
# Update model list when category changes
def update_category_models(category):
for cat in MODELS:
if cat["category"] == category:
return gr.Radio.update(choices=[model[0] for model in cat["models"]], value=cat["models"][0][0])
return gr.Radio.update(choices=[], value=None)
model_categories.change(
fn=update_category_models,
inputs=[model_categories],
outputs=[category_models]
)
# Update main model choice when category model is selected
category_models.change(
fn=lambda x: x,
inputs=[category_models],
outputs=[model_choice]
)
# Process uploaded images
def process_uploaded_images(files):
return [file.name for file in files]
image_upload_btn.upload(
fn=process_uploaded_images,
inputs=[image_upload_btn],
outputs=[images]
)
# Set up events
submit_btn.click(
fn=ask_ai,
inputs=[
message, chatbot, model_choice, temperature, max_tokens,
top_p, frequency_penalty, presence_penalty, images,
documents, reasoning_effort
],
outputs=[chatbot, message]
)
message.submit(
fn=ask_ai,
inputs=[
message, chatbot, model_choice, temperature, max_tokens,
top_p, frequency_penalty, presence_penalty, images,
documents, reasoning_effort
],
outputs=[chatbot, message]
)
clear_btn.click(
fn=clear_chat,
inputs=[],
outputs=[
chatbot, message, images, documents, temperature,
max_tokens, top_p, frequency_penalty, presence_penalty, reasoning_effort
]
)
# Launch directly with Gradio's built-in server
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)