|
import os |
|
import base64 |
|
import gradio as gr |
|
import requests |
|
import json |
|
from io import BytesIO |
|
from PIL import Image |
|
import time |
|
|
|
|
|
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "") |
|
|
|
|
|
free_models = [ |
|
("Google: Gemini Pro 2.0 Experimental (free)", "google/gemini-2.0-pro-exp-02-05:free", 0, 0, 2000000), |
|
("Google: Gemini 2.0 Flash Thinking Experimental 01-21 (free)", "google/gemini-2.0-flash-thinking-exp:free", 0, 0, 1048576), |
|
("Google: Gemini Flash 2.0 Experimental (free)", "google/gemini-2.0-flash-exp:free", 0, 0, 1048576), |
|
("Google: Gemini Pro 2.5 Experimental (free)", "google/gemini-2.5-pro-exp-03-25:free", 0, 0, 1000000), |
|
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 0, 0, 1000000), |
|
("DeepSeek: DeepSeek R1 Zero (free)", "deepseek/deepseek-r1-zero:free", 0, 0, 163840), |
|
("DeepSeek: R1 (free)", "deepseek/deepseek-r1:free", 0, 0, 163840), |
|
("DeepSeek: DeepSeek V3 Base (free)", "deepseek/deepseek-v3-base:free", 0, 0, 131072), |
|
("DeepSeek: DeepSeek V3 0324 (free)", "deepseek/deepseek-chat-v3-0324:free", 0, 0, 131072), |
|
("Google: Gemma 3 4B (free)", "google/gemma-3-4b-it:free", 0, 0, 131072), |
|
("Google: Gemma 3 12B (free)", "google/gemma-3-12b-it:free", 0, 0, 131072), |
|
("Nous: DeepHermes 3 Llama 3 8B Preview (free)", "nousresearch/deephermes-3-llama-3-8b-preview:free", 0, 0, 131072), |
|
("Qwen: Qwen2.5 VL 72B Instruct (free)", "qwen/qwen2.5-vl-72b-instruct:free", 0, 0, 131072), |
|
("DeepSeek: DeepSeek V3 (free)", "deepseek/deepseek-chat:free", 0, 0, 131072), |
|
("NVIDIA: Llama 3.1 Nemotron 70B Instruct (free)", "nvidia/llama-3.1-nemotron-70b-instruct:free", 0, 0, 131072), |
|
("Meta: Llama 3.2 1B Instruct (free)", "meta-llama/llama-3.2-1b-instruct:free", 0, 0, 131072), |
|
("Meta: Llama 3.2 11B Vision Instruct (free)", "meta-llama/llama-3.2-11b-vision-instruct:free", 0, 0, 131072), |
|
("Meta: Llama 3.1 8B Instruct (free)", "meta-llama/llama-3.1-8b-instruct:free", 0, 0, 131072), |
|
("Mistral: Mistral Nemo (free)", "mistralai/mistral-nemo:free", 0, 0, 128000), |
|
("Mistral: Mistral Small 3.1 24B (free)", "mistralai/mistral-small-3.1-24b-instruct:free", 0, 0, 96000), |
|
("Google: Gemma 3 27B (free)", "google/gemma-3-27b-it:free", 0, 0, 96000), |
|
("Qwen: Qwen2.5 VL 3B Instruct (free)", "qwen/qwen2.5-vl-3b-instruct:free", 0, 0, 64000), |
|
("DeepSeek: R1 Distill Qwen 14B (free)", "deepseek/deepseek-r1-distill-qwen-14b:free", 0, 0, 64000), |
|
("Qwen: Qwen2.5-VL 7B Instruct (free)", "qwen/qwen-2.5-vl-7b-instruct:free", 0, 0, 64000), |
|
("Google: LearnLM 1.5 Pro Experimental (free)", "google/learnlm-1.5-pro-experimental:free", 0, 0, 40960), |
|
("Qwen: QwQ 32B (free)", "qwen/qwq-32b:free", 0, 0, 40000), |
|
("Google: Gemini 2.0 Flash Thinking Experimental (free)", "google/gemini-2.0-flash-thinking-exp-1219:free", 0, 0, 40000), |
|
("Bytedance: UI-TARS 72B (free)", "bytedance-research/ui-tars-72b:free", 0, 0, 32768), |
|
("Qwerky 72b (free)", "featherless/qwerky-72b:free", 0, 0, 32768), |
|
("OlympicCoder 7B (free)", "open-r1/olympiccoder-7b:free", 0, 0, 32768), |
|
("OlympicCoder 32B (free)", "open-r1/olympiccoder-32b:free", 0, 0, 32768), |
|
("Google: Gemma 3 1B (free)", "google/gemma-3-1b-it:free", 0, 0, 32768), |
|
("Reka: Flash 3 (free)", "rekaai/reka-flash-3:free", 0, 0, 32768), |
|
("Dolphin3.0 R1 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 0, 0, 32768), |
|
("Dolphin3.0 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-mistral-24b:free", 0, 0, 32768), |
|
("Mistral: Mistral Small 3 (free)", "mistralai/mistral-small-24b-instruct-2501:free", 0, 0, 32768), |
|
("Qwen2.5 Coder 32B Instruct (free)", "qwen/qwen-2.5-coder-32b-instruct:free", 0, 0, 32768), |
|
("Qwen2.5 72B Instruct (free)", "qwen/qwen-2.5-72b-instruct:free", 0, 0, 32768), |
|
("Meta: Llama 3.2 3B Instruct (free)", "meta-llama/llama-3.2-3b-instruct:free", 0, 0, 20000), |
|
("Qwen: QwQ 32B Preview (free)", "qwen/qwq-32b-preview:free", 0, 0, 16384), |
|
("DeepSeek: R1 Distill Qwen 32B (free)", "deepseek/deepseek-r1-distill-qwen-32b:free", 0, 0, 16000), |
|
("Qwen: Qwen2.5 VL 32B Instruct (free)", "qwen/qwen2.5-vl-32b-instruct:free", 0, 0, 8192), |
|
("Moonshot AI: Moonlight 16B A3B Instruct (free)", "moonshotai/moonlight-16b-a3b-instruct:free", 0, 0, 8192), |
|
("DeepSeek: R1 Distill Llama 70B (free)", "deepseek/deepseek-r1-distill-llama-70b:free", 0, 0, 8192), |
|
("Qwen 2 7B Instruct (free)", "qwen/qwen-2-7b-instruct:free", 0, 0, 8192), |
|
("Google: Gemma 2 9B (free)", "google/gemma-2-9b-it:free", 0, 0, 8192), |
|
("Mistral: Mistral 7B Instruct (free)", "mistralai/mistral-7b-instruct:free", 0, 0, 8192), |
|
("Microsoft: Phi-3 Mini 128K Instruct (free)", "microsoft/phi-3-mini-128k-instruct:free", 0, 0, 8192), |
|
("Microsoft: Phi-3 Medium 128K Instruct (free)", "microsoft/phi-3-medium-128k-instruct:free", 0, 0, 8192), |
|
("Meta: Llama 3 8B Instruct (free)", "meta-llama/llama-3-8b-instruct:free", 0, 0, 8192), |
|
("OpenChat 3.5 7B (free)", "openchat/openchat-7b:free", 0, 0, 8192), |
|
("Meta: Llama 3.3 70B Instruct (free)", "meta-llama/llama-3.3-70b-instruct:free", 0, 0, 8000), |
|
("AllenAI: Molmo 7B D (free)", "allenai/molmo-7b-d:free", 0, 0, 4096), |
|
("Rogue Rose 103B v0.2 (free)", "sophosympatheia/rogue-rose-103b-v0.2:free", 0, 0, 4096), |
|
("Toppy M 7B (free)", "undi95/toppy-m-7b:free", 0, 0, 4096), |
|
("Hugging Face: Zephyr 7B (free)", "huggingfaceh4/zephyr-7b-beta:free", 0, 0, 4096), |
|
("MythoMax 13B (free)", "gryphe/mythomax-l2-13b:free", 0, 0, 4096), |
|
] |
|
|
|
|
|
vision_model_ids = [ |
|
"meta-llama/llama-3.2-11b-vision-instruct:free", |
|
"qwen/qwen2.5-vl-72b-instruct:free", |
|
"qwen/qwen2.5-vl-3b-instruct:free", |
|
"qwen/qwen2.5-vl-32b-instruct:free", |
|
"qwen/qwen-2.5-vl-7b-instruct:free", |
|
"google/gemini-2.0-pro-exp-02-05:free", |
|
"google/gemini-2.5-pro-exp-03-25:free" |
|
] |
|
|
|
|
|
def format_model_name(name, context_size): |
|
if context_size >= 1000000: |
|
context_str = f"{context_size/1000000:.1f}M tokens" |
|
else: |
|
context_str = f"{context_size/1000:.0f}K tokens" |
|
return f"{name} ({context_str})" |
|
|
|
|
|
vision_models = [(format_model_name(name, context_size), model_id, context_size) |
|
for name, model_id, _, _, context_size in free_models |
|
if model_id in vision_model_ids] |
|
|
|
text_models = [(format_model_name(name, context_size), model_id, context_size) |
|
for name, model_id, _, _, context_size in free_models] |
|
|
|
def encode_image(image): |
|
"""Convert PIL Image to base64 string""" |
|
buffered = BytesIO() |
|
image.save(buffered, format="JPEG") |
|
return base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
|
|
def encode_file(file_path): |
|
"""Convert text file to string""" |
|
try: |
|
with open(file_path, 'r', encoding='utf-8') as file: |
|
return file.read() |
|
except Exception as e: |
|
return f"Error reading file: {str(e)}" |
|
|
|
def process_message_stream(message, chat_history, model_name, uploaded_image=None, uploaded_file=None, |
|
temperature=0.7, top_p=1.0, max_tokens=None, stream=True): |
|
"""Process message and stream the model response""" |
|
|
|
model_id = model_name.split(' ')[1] if len(model_name.split(' ')) > 1 else model_name |
|
|
|
|
|
if not OPENROUTER_API_KEY: |
|
yield "Please set your OpenRouter API key in the environment variables.", chat_history |
|
return |
|
|
|
|
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {OPENROUTER_API_KEY}", |
|
"HTTP-Referer": "https://huggingface.co/spaces", |
|
} |
|
|
|
url = "https://openrouter.ai/api/v1/chat/completions" |
|
|
|
|
|
messages = [] |
|
|
|
|
|
for item in chat_history: |
|
if isinstance(item, tuple): |
|
|
|
human_msg, ai_msg = item |
|
messages.append({"role": "user", "content": human_msg}) |
|
messages.append({"role": "assistant", "content": ai_msg}) |
|
else: |
|
|
|
messages.append(item) |
|
|
|
|
|
if uploaded_image: |
|
|
|
base64_image = encode_image(uploaded_image) |
|
content = [ |
|
{"type": "text", "text": message} |
|
] |
|
|
|
|
|
if uploaded_file: |
|
file_content = encode_file(uploaded_file) |
|
content[0]["text"] = f"{message}\n\nFile content:\n```\n{file_content}\n```" |
|
|
|
|
|
content.append({ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": f"data:image/jpeg;base64,{base64_image}" |
|
} |
|
}) |
|
|
|
messages.append({"role": "user", "content": content}) |
|
else: |
|
if uploaded_file: |
|
file_content = encode_file(uploaded_file) |
|
content = f"{message}\n\nFile content:\n```\n{file_content}\n```" |
|
messages.append({"role": "user", "content": content}) |
|
else: |
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
context_length = next((context for _, model_id, context in text_models if model_id == model_id), 4096) |
|
|
|
|
|
if not max_tokens: |
|
|
|
max_tokens = min(4000, int(context_length * 0.25)) |
|
|
|
|
|
data = { |
|
"model": model_id, |
|
"messages": messages, |
|
"stream": stream, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"max_tokens": max_tokens |
|
} |
|
|
|
try: |
|
|
|
user_msg = {"role": "user", "content": message} |
|
ai_msg = {"role": "assistant", "content": ""} |
|
chat_history.append(user_msg) |
|
chat_history.append(ai_msg) |
|
|
|
full_response = "" |
|
|
|
if stream: |
|
|
|
with requests.post(url, headers=headers, json=data, stream=True) as response: |
|
response.raise_for_status() |
|
buffer = "" |
|
|
|
for chunk in response.iter_content(chunk_size=1024, decode_unicode=False): |
|
if chunk: |
|
buffer += chunk.decode('utf-8') |
|
|
|
while True: |
|
line_end = buffer.find('\n') |
|
if line_end == -1: |
|
break |
|
|
|
line = buffer[:line_end].strip() |
|
buffer = buffer[line_end + 1:] |
|
|
|
if line.startswith('data: '): |
|
data = line[6:] |
|
if data == '[DONE]': |
|
break |
|
|
|
try: |
|
data_obj = json.loads(data) |
|
delta_content = data_obj["choices"][0]["delta"].get("content", "") |
|
if delta_content: |
|
full_response += delta_content |
|
|
|
chat_history[-1]["content"] = full_response |
|
yield chat_history |
|
except json.JSONDecodeError: |
|
pass |
|
else: |
|
|
|
response = requests.post(url, headers=headers, json=data) |
|
response.raise_for_status() |
|
result = response.json() |
|
full_response = result.get("choices", [{}])[0].get("message", {}).get("content", "No response") |
|
chat_history[-1]["content"] = full_response |
|
yield chat_history |
|
|
|
return chat_history |
|
|
|
except Exception as e: |
|
error_msg = f"Error: {str(e)}" |
|
chat_history[-1]["content"] = error_msg |
|
yield chat_history |
|
|
|
|
|
css = """ |
|
.gradio-container { |
|
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif; |
|
} |
|
.chat-message { |
|
padding: 15px; |
|
border-radius: 10px; |
|
margin-bottom: 10px; |
|
} |
|
.user-message { |
|
background-color: #f0f4f8; |
|
} |
|
.assistant-message { |
|
background-color: #e9f5ff; |
|
} |
|
#chat-container { |
|
height: 600px; |
|
overflow-y: auto; |
|
} |
|
#chat-input { |
|
min-height: 120px; |
|
border-radius: 8px; |
|
padding: 10px; |
|
} |
|
#model-select-container { |
|
border-radius: 8px; |
|
padding: 15px; |
|
background-color: #f8fafc; |
|
} |
|
.app-header { |
|
text-align: center; |
|
margin-bottom: 20px; |
|
} |
|
.app-header h1 { |
|
font-weight: 700; |
|
color: #2C3E50; |
|
margin-bottom: 5px; |
|
} |
|
.app-header p { |
|
color: #7F8C8D; |
|
margin-top: 0; |
|
} |
|
.parameter-container { |
|
background-color: #f8fafc; |
|
padding: 10px; |
|
border-radius: 8px; |
|
margin-top: 10px; |
|
} |
|
.file-upload-container { |
|
margin-top: 10px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: |
|
gr.HTML(""" |
|
<div class="app-header"> |
|
<h1>🔆 CrispChat</h1> |
|
<p>Chat with free OpenRouter AI models - supports text, images, and files</p> |
|
</div> |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
chatbot = gr.Chatbot( |
|
height=600, |
|
show_copy_button=True, |
|
show_share_button=False, |
|
elem_id="chatbot", |
|
layout="bubble", |
|
avatar_images=("👤", "🤖"), |
|
bubble_full_width=False, |
|
type="messages" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=10): |
|
user_message = gr.Textbox( |
|
placeholder="Type your message here...", |
|
show_label=False, |
|
elem_id="chat-input", |
|
lines=3 |
|
) |
|
|
|
with gr.Row(): |
|
image_upload = gr.Image( |
|
type="pil", |
|
label="Image (optional)", |
|
show_label=True, |
|
scale=1 |
|
) |
|
|
|
file_upload = gr.File( |
|
label="Text File (optional)", |
|
file_types=[".txt", ".md", ".py", ".js", ".html", ".css", ".json"], |
|
scale=1 |
|
) |
|
|
|
submit_btn = gr.Button("Send", scale=1, variant="primary") |
|
|
|
with gr.Column(scale=2): |
|
with gr.Accordion("Model Selection", open=True): |
|
using_vision = gr.Checkbox(label="Using image", value=False) |
|
|
|
model_selector = gr.Dropdown( |
|
choices=[name for name, _, _ in text_models], |
|
value=text_models[0][0], |
|
label="Select Model", |
|
elem_id="model-selector" |
|
) |
|
|
|
context_info = gr.Markdown(value=f"Context: {text_models[0][2]:,} tokens") |
|
|
|
with gr.Accordion("Parameters", open=False): |
|
with gr.Group(): |
|
temperature = gr.Slider( |
|
minimum=0.0, |
|
maximum=2.0, |
|
value=0.7, |
|
step=0.1, |
|
label="Temperature", |
|
info="Higher = more creative, Lower = more deterministic" |
|
) |
|
|
|
top_p = gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=1.0, |
|
step=0.1, |
|
label="Top P", |
|
info="Controls token diversity" |
|
) |
|
|
|
max_tokens = gr.Slider( |
|
minimum=100, |
|
maximum=8000, |
|
value=1000, |
|
step=100, |
|
label="Max Tokens", |
|
info="Maximum length of the response" |
|
) |
|
|
|
use_streaming = gr.Checkbox( |
|
label="Stream Response", |
|
value=True, |
|
info="Show response as it's generated" |
|
) |
|
|
|
with gr.Accordion("Tips", open=False): |
|
gr.Markdown(""" |
|
* Select a vision-capable model for images |
|
* Upload text files to include their content |
|
* Check model context window sizes |
|
* Adjust temperature for creativity level |
|
* Top P controls diversity of responses |
|
""") |
|
|
|
|
|
def update_model_selector(use_vision): |
|
if use_vision: |
|
return ( |
|
gr.Dropdown(choices=[name for name, _, _ in vision_models], value=vision_models[0][0]), |
|
f"Context: {vision_models[0][2]:,} tokens" |
|
) |
|
else: |
|
return ( |
|
gr.Dropdown(choices=[name for name, _, _ in text_models], value=text_models[0][0]), |
|
f"Context: {text_models[0][2]:,} tokens" |
|
) |
|
|
|
def update_context_info(model_name): |
|
|
|
for name, _, context_size in text_models: |
|
if name == model_name: |
|
return f"Context: {context_size:,} tokens" |
|
for name, _, context_size in vision_models: |
|
if name == model_name: |
|
return f"Context: {context_size:,} tokens" |
|
return "Context size unknown" |
|
|
|
using_vision.change( |
|
fn=update_model_selector, |
|
inputs=using_vision, |
|
outputs=[model_selector, context_info] |
|
) |
|
|
|
model_selector.change( |
|
fn=update_context_info, |
|
inputs=model_selector, |
|
outputs=context_info |
|
) |
|
|
|
|
|
def on_submit(message, history, model, image, file, temp, top_p_val, max_tok, stream): |
|
if not message and not image and not file: |
|
return "", history |
|
return "", process_message_stream( |
|
message, |
|
history, |
|
model, |
|
image, |
|
file.name if file else None, |
|
temperature=temp, |
|
top_p=top_p_val, |
|
max_tokens=max_tok, |
|
stream=stream |
|
) |
|
|
|
|
|
submit_btn.click( |
|
on_submit, |
|
inputs=[ |
|
user_message, chatbot, model_selector, |
|
image_upload, file_upload, |
|
temperature, top_p, max_tokens, use_streaming |
|
], |
|
outputs=[user_message, chatbot] |
|
) |
|
|
|
user_message.submit( |
|
on_submit, |
|
inputs=[ |
|
user_message, chatbot, model_selector, |
|
image_upload, file_upload, |
|
temperature, top_p, max_tokens, use_streaming |
|
], |
|
outputs=[user_message, chatbot] |
|
) |
|
|
|
|
|
from fastapi import FastAPI, Request, HTTPException |
|
from fastapi.responses import JSONResponse |
|
from pydantic import BaseModel |
|
from fastapi.middleware.cors import CORSMiddleware |
|
|
|
app = FastAPI() |
|
|
|
class GenerateRequest(BaseModel): |
|
message: str |
|
model: str = None |
|
image_data: str = None |
|
|
|
@app.post("/api/generate") |
|
async def api_generate(request: GenerateRequest): |
|
"""API endpoint for generating responses""" |
|
try: |
|
message = request.message |
|
model_name = request.model |
|
image_data = request.image_data |
|
|
|
|
|
image = None |
|
if image_data: |
|
try: |
|
|
|
image_bytes = base64.b64decode(image_data) |
|
image = Image.open(BytesIO(image_bytes)) |
|
except Exception as e: |
|
return JSONResponse( |
|
status_code=400, |
|
content={"error": f"Image processing error: {str(e)}"} |
|
) |
|
|
|
|
|
try: |
|
|
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {OPENROUTER_API_KEY}", |
|
"HTTP-Referer": "https://huggingface.co/spaces", |
|
} |
|
|
|
url = "https://openrouter.ai/api/v1/chat/completions" |
|
|
|
|
|
model_id = None |
|
if model_name: |
|
for _, mid, _ in text_models + vision_models: |
|
if model_name in mid or model_name == mid: |
|
model_id = mid |
|
break |
|
|
|
if not model_id: |
|
model_id = text_models[0][1] |
|
|
|
|
|
messages = [] |
|
|
|
if image: |
|
|
|
base64_image = encode_image(image) |
|
content = [ |
|
{"type": "text", "text": message}, |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": f"data:image/jpeg;base64,{base64_image}" |
|
} |
|
} |
|
] |
|
messages.append({"role": "user", "content": content}) |
|
else: |
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
data = { |
|
"model": model_id, |
|
"messages": messages, |
|
"temperature": 0.7 |
|
} |
|
|
|
|
|
response = requests.post(url, headers=headers, json=data) |
|
response.raise_for_status() |
|
|
|
|
|
result = response.json() |
|
reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response") |
|
|
|
return {"response": reply} |
|
|
|
except Exception as e: |
|
return JSONResponse( |
|
status_code=500, |
|
content={"error": f"Error generating response: {str(e)}"} |
|
) |
|
|
|
except Exception as e: |
|
return JSONResponse( |
|
status_code=500, |
|
content={"error": f"Server error: {str(e)}"} |
|
) |
|
|
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
import gradio as gr |
|
app = gr.mount_gradio_app(app, demo, path="/") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |