CrispChat / app.py
cstr's picture
Update app.py
82deaf2 verified
raw
history blame
16.6 kB
import os
import base64
import gradio as gr
import requests
import json
from io import BytesIO
from PIL import Image
import time
# Get API key from environment variable for security
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
# Model information
free_models = [
("Google: Gemini Pro 2.0 Experimental (free)", "google/gemini-2.0-pro-exp-02-05:free", 0, 0, 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21 (free)", "google/gemini-2.0-flash-thinking-exp:free", 0, 0, 1048576),
("Google: Gemini Flash 2.0 Experimental (free)", "google/gemini-2.0-flash-exp:free", 0, 0, 1048576),
("Google: Gemini Pro 2.5 Experimental (free)", "google/gemini-2.5-pro-exp-03-25:free", 0, 0, 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 0, 0, 1000000),
("DeepSeek: DeepSeek R1 Zero (free)", "deepseek/deepseek-r1-zero:free", 0, 0, 163840),
("DeepSeek: R1 (free)", "deepseek/deepseek-r1:free", 0, 0, 163840),
("DeepSeek: DeepSeek V3 Base (free)", "deepseek/deepseek-v3-base:free", 0, 0, 131072),
("DeepSeek: DeepSeek V3 0324 (free)", "deepseek/deepseek-chat-v3-0324:free", 0, 0, 131072),
("Google: Gemma 3 4B (free)", "google/gemma-3-4b-it:free", 0, 0, 131072),
("Google: Gemma 3 12B (free)", "google/gemma-3-12b-it:free", 0, 0, 131072),
("Nous: DeepHermes 3 Llama 3 8B Preview (free)", "nousresearch/deephermes-3-llama-3-8b-preview:free", 0, 0, 131072),
("Qwen: Qwen2.5 VL 72B Instruct (free)", "qwen/qwen2.5-vl-72b-instruct:free", 0, 0, 131072),
("DeepSeek: DeepSeek V3 (free)", "deepseek/deepseek-chat:free", 0, 0, 131072),
("NVIDIA: Llama 3.1 Nemotron 70B Instruct (free)", "nvidia/llama-3.1-nemotron-70b-instruct:free", 0, 0, 131072),
("Meta: Llama 3.2 1B Instruct (free)", "meta-llama/llama-3.2-1b-instruct:free", 0, 0, 131072),
("Meta: Llama 3.2 11B Vision Instruct (free)", "meta-llama/llama-3.2-11b-vision-instruct:free", 0, 0, 131072),
("Meta: Llama 3.1 8B Instruct (free)", "meta-llama/llama-3.1-8b-instruct:free", 0, 0, 131072),
("Mistral: Mistral Nemo (free)", "mistralai/mistral-nemo:free", 0, 0, 128000),
("Mistral: Mistral Small 3.1 24B (free)", "mistralai/mistral-small-3.1-24b-instruct:free", 0, 0, 96000),
("Google: Gemma 3 27B (free)", "google/gemma-3-27b-it:free", 0, 0, 96000),
("Qwen: Qwen2.5 VL 3B Instruct (free)", "qwen/qwen2.5-vl-3b-instruct:free", 0, 0, 64000),
("DeepSeek: R1 Distill Qwen 14B (free)", "deepseek/deepseek-r1-distill-qwen-14b:free", 0, 0, 64000),
("Qwen: Qwen2.5-VL 7B Instruct (free)", "qwen/qwen-2.5-vl-7b-instruct:free", 0, 0, 64000),
("Google: LearnLM 1.5 Pro Experimental (free)", "google/learnlm-1.5-pro-experimental:free", 0, 0, 40960),
("Qwen: QwQ 32B (free)", "qwen/qwq-32b:free", 0, 0, 40000),
("Google: Gemini 2.0 Flash Thinking Experimental (free)", "google/gemini-2.0-flash-thinking-exp-1219:free", 0, 0, 40000),
("Bytedance: UI-TARS 72B (free)", "bytedance-research/ui-tars-72b:free", 0, 0, 32768),
("Qwerky 72b (free)", "featherless/qwerky-72b:free", 0, 0, 32768),
("OlympicCoder 7B (free)", "open-r1/olympiccoder-7b:free", 0, 0, 32768),
("OlympicCoder 32B (free)", "open-r1/olympiccoder-32b:free", 0, 0, 32768),
("Google: Gemma 3 1B (free)", "google/gemma-3-1b-it:free", 0, 0, 32768),
("Reka: Flash 3 (free)", "rekaai/reka-flash-3:free", 0, 0, 32768),
("Dolphin3.0 R1 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 0, 0, 32768),
("Dolphin3.0 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-mistral-24b:free", 0, 0, 32768),
("Mistral: Mistral Small 3 (free)", "mistralai/mistral-small-24b-instruct-2501:free", 0, 0, 32768),
("Qwen2.5 Coder 32B Instruct (free)", "qwen/qwen-2.5-coder-32b-instruct:free", 0, 0, 32768),
("Qwen2.5 72B Instruct (free)", "qwen/qwen-2.5-72b-instruct:free", 0, 0, 32768),
("Meta: Llama 3.2 3B Instruct (free)", "meta-llama/llama-3.2-3b-instruct:free", 0, 0, 20000),
("Qwen: QwQ 32B Preview (free)", "qwen/qwq-32b-preview:free", 0, 0, 16384),
("DeepSeek: R1 Distill Qwen 32B (free)", "deepseek/deepseek-r1-distill-qwen-32b:free", 0, 0, 16000),
("Qwen: Qwen2.5 VL 32B Instruct (free)", "qwen/qwen2.5-vl-32b-instruct:free", 0, 0, 8192),
("Moonshot AI: Moonlight 16B A3B Instruct (free)", "moonshotai/moonlight-16b-a3b-instruct:free", 0, 0, 8192),
("DeepSeek: R1 Distill Llama 70B (free)", "deepseek/deepseek-r1-distill-llama-70b:free", 0, 0, 8192),
("Qwen 2 7B Instruct (free)", "qwen/qwen-2-7b-instruct:free", 0, 0, 8192),
("Google: Gemma 2 9B (free)", "google/gemma-2-9b-it:free", 0, 0, 8192),
("Mistral: Mistral 7B Instruct (free)", "mistralai/mistral-7b-instruct:free", 0, 0, 8192),
("Microsoft: Phi-3 Mini 128K Instruct (free)", "microsoft/phi-3-mini-128k-instruct:free", 0, 0, 8192),
("Microsoft: Phi-3 Medium 128K Instruct (free)", "microsoft/phi-3-medium-128k-instruct:free", 0, 0, 8192),
("Meta: Llama 3 8B Instruct (free)", "meta-llama/llama-3-8b-instruct:free", 0, 0, 8192),
("OpenChat 3.5 7B (free)", "openchat/openchat-7b:free", 0, 0, 8192),
("Meta: Llama 3.3 70B Instruct (free)", "meta-llama/llama-3.3-70b-instruct:free", 0, 0, 8000),
("AllenAI: Molmo 7B D (free)", "allenai/molmo-7b-d:free", 0, 0, 4096),
("Rogue Rose 103B v0.2 (free)", "sophosympatheia/rogue-rose-103b-v0.2:free", 0, 0, 4096),
("Toppy M 7B (free)", "undi95/toppy-m-7b:free", 0, 0, 4096),
("Hugging Face: Zephyr 7B (free)", "huggingfaceh4/zephyr-7b-beta:free", 0, 0, 4096),
("MythoMax 13B (free)", "gryphe/mythomax-l2-13b:free", 0, 0, 4096),
]
# Filter for vision models
vision_model_ids = [
"meta-llama/llama-3.2-11b-vision-instruct:free",
"qwen/qwen2.5-vl-72b-instruct:free",
"qwen/qwen2.5-vl-3b-instruct:free",
"qwen/qwen2.5-vl-32b-instruct:free",
"qwen/qwen-2.5-vl-7b-instruct:free",
"google/gemini-2.0-pro-exp-02-05:free",
"google/gemini-2.5-pro-exp-03-25:free"
]
# Prefilter vision models
vision_models = [(name, model_id) for name, model_id, _, _, _ in free_models if model_id in vision_model_ids]
text_models = [(name, model_id) for name, model_id, _, _, _ in free_models]
def encode_image(image):
"""Convert PIL Image to base64 string"""
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def process_message_stream(message, chat_history, model_name, uploaded_image=None):
"""Process message and stream the model response"""
model_id = next((model_id for name, model_id, _, _, _ in free_models if name == model_name), text_models[0][1])
# Check if API key is set
if not OPENROUTER_API_KEY:
yield "Please set your OpenRouter API key in the environment variables.", chat_history
return
# Setup headers and URL
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces/cstr/CrispChat", # Replace with your actual space URL in production
}
url = "https://openrouter.ai/api/v1/chat/completions"
# Build message content
messages = []
# Add chat history
for human_msg, ai_msg in chat_history:
messages.append({"role": "user", "content": human_msg})
messages.append({"role": "assistant", "content": ai_msg})
# Add current message
if uploaded_image:
# Image processing for vision models
base64_image = encode_image(uploaded_image)
content = [
{"type": "text", "text": message},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
messages.append({"role": "user", "content": content})
else:
messages.append({"role": "user", "content": message})
# Build request data
data = {
"model": model_id,
"messages": messages,
"stream": True,
"temperature": 0.7
}
try:
# Create a new message pair in the chat history
chat_history.append((message, ""))
full_response = ""
# Make streaming API call
with requests.post(url, headers=headers, json=data, stream=True) as response:
response.raise_for_status()
buffer = ""
for chunk in response.iter_content(chunk_size=1024, decode_unicode=False):
if chunk:
buffer += chunk.decode('utf-8')
while True:
line_end = buffer.find('\n')
if line_end == -1:
break
line = buffer[:line_end].strip()
buffer = buffer[line_end + 1:]
if line.startswith('data: '):
data = line[6:]
if data == '[DONE]':
break
try:
data_obj = json.loads(data)
delta_content = data_obj["choices"][0]["delta"].get("content", "")
if delta_content:
full_response += delta_content
# Update the last assistant message
chat_history[-1] = (message, full_response)
yield full_response, chat_history
except json.JSONDecodeError:
pass
return full_response, chat_history
except Exception as e:
error_msg = f"Error: {str(e)}"
chat_history[-1] = (message, error_msg)
yield error_msg, chat_history
# Create a nice CSS theme
css = """
.gradio-container {
font-family: 'Segoe UI', Arial, sans-serif;
}
#chat-message {
min-height: 100px;
}
#model-selector {
max-width: 100%;
}
.app-header {
text-align: center;
margin-bottom: 10px;
}
.app-header h1 {
font-weight: 700;
color: #2C3E50;
}
.app-header p {
color: #7F8C8D;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div class="app-header">
<h1>🔆 CrispChat</h1>
<p>Chat with AI models - supports text and images</p>
</div>
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
show_share_button=False,
elem_id="chatbot",
layout="panel",
type="messages" # Use new message format
)
with gr.Row():
user_message = gr.Textbox(
placeholder="Type your message here...",
show_label=False,
elem_id="chat-message",
scale=10
)
image_upload = gr.Image(
type="pil",
label="Image Upload (optional)",
show_label=False,
scale=2
)
submit_btn = gr.Button("Send", scale=1, variant="primary")
with gr.Column(scale=1):
with gr.Accordion("Model Selection", open=True):
using_vision = gr.Checkbox(label="Using image", value=False)
model_selector = gr.Dropdown(
choices=[name for name, _ in text_models],
value=text_models[0][0],
label="Select Model",
elem_id="model-selector"
)
with gr.Accordion("Tips", open=True):
gr.Markdown("""
* For best results with images, select a vision-capable model
* Text models can handle up to 32k tokens
* Try different models for different tasks
* API output is in Markdown format for code highlighting
""")
with gr.Accordion("API", open=False):
api_url = gr.Textbox(
value="https://cstr-crispchat.hf.space/api/generate",
label="API Endpoint",
interactive=False
)
api_docs = gr.Markdown("""
```json
POST /api/generate
{
"message": "Your message here",
"model": "model-id-here",
"image_data": "optional-base64-encoded-image"
}
```
""")
# Define events
def update_model_selector(use_vision):
if use_vision:
return gr.Dropdown(choices=[name for name, _ in vision_models], value=vision_models[0][0])
else:
return gr.Dropdown(choices=[name for name, _ in text_models], value=text_models[0][0])
using_vision.change(
fn=update_model_selector,
inputs=using_vision,
outputs=model_selector
)
# Submit function
def on_submit(message, history, model, image):
if not message and not image:
return "", history
return "", process_message_stream(message, history, model, image)
# Set up submission events
submit_btn.click(
on_submit,
inputs=[user_message, chatbot, model_selector, image_upload],
outputs=[user_message, chatbot]
)
user_message.submit(
on_submit,
inputs=[user_message, chatbot, model_selector, image_upload],
outputs=[user_message, chatbot]
)
# API endpoint for external access
@demo.queue()
def api_generate(message, model=None, image_data=None):
"""API endpoint for generating responses"""
model_name = model or text_models[0][0]
# Process image if provided
image = None
if image_data:
try:
# Decode base64 image
image_bytes = base64.b64decode(image_data)
image = Image.open(BytesIO(image_bytes))
except Exception as e:
return {"error": f"Image processing error: {str(e)}"}
# Generate response
try:
# Setup headers and URL
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces",
}
url = "https://openrouter.ai/api/v1/chat/completions"
# Get model_id from model_name
model_id = next((model_id for name, model_id, _, _, _ in free_models if name == model_name), None)
if not model_id and model:
# Check if model parameter is a direct model ID
model_id = model
if not model_id:
model_id = text_models[0][1]
# Build messages
messages = []
if image:
# Image processing for vision models
base64_image = encode_image(image)
content = [
{"type": "text", "text": message},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
messages.append({"role": "user", "content": content})
else:
messages.append({"role": "user", "content": message})
# Build request data
data = {
"model": model_id,
"messages": messages,
"temperature": 0.7
}
# Make API call
response = requests.post(url, headers=headers, json=data)
response.raise_for_status()
# Parse response
result = response.json()
reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
return {"response": reply}
except Exception as e:
return {"error": f"Error generating response: {str(e)}"}
demo.queue()
demo.launch(share=False)
if __name__ == "__main__":
# Remove or comment out demo.launch() here if you added it above
pass