Spaces:
Running
Running
File size: 11,228 Bytes
0bb0d8e da9138c 64259e4 acd8816 0bb0d8e acd8816 16bc3e4 a8b126b 16bc3e4 a8b126b 16bc3e4 acd8816 16bc3e4 d274746 da9138c a96aeb1 d274746 da9138c d274746 acd8816 a96aeb1 d274746 a96aeb1 64259e4 a96aeb1 64259e4 a96aeb1 64259e4 d274746 da9138c d274746 acd8816 d274746 64259e4 d274746 64259e4 acd8816 64259e4 acd8816 64259e4 acd8816 a8b126b a96aeb1 a8b126b a96aeb1 d274746 a96aeb1 64259e4 a8b126b a96aeb1 64259e4 acd8816 d274746 64259e4 d274746 a8b126b d274746 acd8816 64259e4 a96aeb1 d274746 a96aeb1 d274746 a96aeb1 64259e4 a8b126b 16bc3e4 acd8816 a8b126b d274746 64259e4 a8b126b 6bd9075 64259e4 d274746 acd8816 16bc3e4 acd8816 a8b126b da9138c a8b126b da9138c acd8816 16bc3e4 64259e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import gradio as gr
import os
import time
import tempfile
import requests
from urllib.parse import urlparse
from pydub import AudioSegment
import logging
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import yt_dlp
logging.basicConfig(level=logging.INFO)
# Clone and install faster-whisper from GitHub
# (we should be able to do this in build.sh in a hf space)
try:
subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True)
subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True)
except subprocess.CalledProcessError as e:
print(f"Error during faster-whisper installation: {e}")
sys.exit(1)
# Add the faster-whisper directory to the Python path
sys.path.append("./faster-whisper")
from faster_whisper import WhisperModel
from faster_whisper.transcribe import BatchedInferencePipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
def download_audio(url, method_choice):
parsed_url = urlparse(url)
if parsed_url.netloc in ['www.youtube.com', 'youtu.be', 'youtube.com']:
return download_youtube_audio(url, method_choice)
else:
return download_direct_audio(url, method_choice)
def download_youtube_audio(url, method_choice):
methods = {
'yt-dlp': youtube_dl_method,
'pytube': pytube_method,
'youtube-dl': youtube_dl_classic_method,
'yt-dlp-alt': youtube_dl_alternative_method,
'ffmpeg': ffmpeg_method,
'aria2': aria2_method
}
method = methods.get(method_choice, youtube_dl_method)
try:
return method(url)
except Exception as e:
logging.error(f"Error downloading using {method_choice}: {str(e)}")
return None
def youtube_dl_method(url):
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': '%(id)s.%(ext)s',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
return f"{info['id']}.mp3"
def pytube_method(url):
from pytube import YouTube
yt = YouTube(url)
audio_stream = yt.streams.filter(only_audio=True).first()
out_file = audio_stream.download()
base, ext = os.path.splitext(out_file)
new_file = base + '.mp3'
os.rename(out_file, new_file)
return new_file
def youtube_dl_classic_method(url):
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': '%(id)s.%(ext)s',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
return f"{info['id']}.mp3"
def youtube_dl_alternative_method(url):
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': '%(id)s.%(ext)s',
'no_warnings': True,
'quiet': True,
'no_check_certificate': True,
'prefer_insecure': True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
return f"{info['id']}.mp3"
def ffmpeg_method(url):
output_file = tempfile.mktemp(suffix='.mp3')
command = ['ffmpeg', '-i', url, '-vn', '-acodec', 'libmp3lame', '-q:a', '2', output_file]
subprocess.run(command, check=True, capture_output=True)
return output_file
def aria2_method(url):
output_file = tempfile.mktemp(suffix='.mp3')
command = ['aria2c', '--split=4', '--max-connection-per-server=4', '--out', output_file, url]
subprocess.run(command, check=True, capture_output=True)
return output_file
def download_direct_audio(url, method_choice):
if method_choice == 'wget':
return wget_method(url)
else:
try:
response = requests.get(url)
if response.status_code == 200:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
temp_file.write(response.content)
return temp_file.name
else:
raise Exception(f"Failed to download audio from {url}")
except Exception as e:
logging.error(f"Error downloading direct audio: {str(e)}")
return None
def wget_method(url):
output_file = tempfile.mktemp(suffix='.mp3')
command = ['wget', '-O', output_file, url]
subprocess.run(command, check=True, capture_output=True)
return output_file
def trim_audio(audio_path, start_time, end_time):
audio = AudioSegment.from_file(audio_path)
trimmed_audio = audio[start_time*1000:end_time*1000] if end_time else audio[start_time*1000:]
trimmed_audio_path = tempfile.mktemp(suffix='.wav')
trimmed_audio.export(trimmed_audio_path, format="wav")
return trimmed_audio_path
def save_transcription(transcription):
file_path = tempfile.mktemp(suffix='.txt')
with open(file_path, 'w') as f:
f.write(transcription)
return file_path
def transcribe_audio(input_source, model_choice, batch_size, download_method, start_time=None, end_time=None, verbose=False):
try:
if model_choice == "faster-whisper":
model = WhisperModel("cstr/whisper-large-v3-turbo-int8_float32", device="auto", compute_type="int8")
batched_model = BatchedInferencePipeline(model=model)
elif model_choice == "primeline/whisper-large-v3-german":
model_id = "primeline/whisper-large-v3-german"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=batch_size,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
elif model_choice == "openai/whisper-large-v3":
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
)
else:
raise ValueError("Invalid model choice")
# Rest of the code remains the same
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
audio_path = download_audio(input_source, download_method)
if audio_path.startswith("Error"):
yield f"Error: {audio_path}", "", None
return
else:
audio_path = input_source
if start_time is not None or end_time is not None:
trimmed_audio_path = trim_audio(audio_path, start_time or 0, end_time)
audio_path = trimmed_audio_path
if model_choice == "faster-whisper":
start_time_perf = time.time()
segments, info = batched_model.transcribe(audio_path, batch_size=batch_size, initial_prompt=None)
end_time_perf = time.time()
else:
start_time_perf = time.time()
result = pipe(audio_path)
segments = result["chunks"]
end_time_perf = time.time()
transcription_time = end_time_perf - start_time_perf
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024)
metrics_output = (
f"Transcription time: {transcription_time:.2f} seconds\n"
f"Audio file size: {audio_file_size:.2f} MB\n"
)
if verbose:
yield metrics_output, "", None
transcription = ""
for segment in segments:
if model_choice == "faster-whisper":
transcription_segment = f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n"
else:
transcription_segment = f"[{segment['timestamp'][0]:.2f}s -> {segment['timestamp'][1]:.2f}s] {segment['text']}\n"
transcription += transcription_segment
if verbose:
yield metrics_output, transcription, None
transcription_file = save_transcription(transcription)
yield metrics_output, transcription, transcription_file
except Exception as e:
yield f"An error occurred: {str(e)}", "", None
finally:
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
try:
os.remove(audio_path)
except:
pass
if start_time is not None or end_time is not None:
try:
os.remove(trimmed_audio_path)
except:
pass
iface = gr.Interface(
fn=transcribe_audio,
inputs=[
gr.Textbox(label="Audio Source (Upload, URL, or YouTube URL)"),
gr.Dropdown(choices=["faster-whisper", "primeline/whisper-large-v3-german", "openai/whisper-large-v3"], label="Model Choice", value="faster-whisper"),
gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size"),
gr.Dropdown(choices=["yt-dlp", "pytube", "youtube-dl", "yt-dlp-alt", "ffmpeg", "aria2", "wget"], label="Download Method", value="yt-dlp"),
gr.Number(label="Start Time (seconds)", value=0),
gr.Number(label="End Time (seconds)", value=0),
gr.Checkbox(label="Verbose Output", value=False)
],
outputs=[
gr.Textbox(label="Transcription Metrics and Verbose Messages", lines=10),
gr.Textbox(label="Transcription", lines=10),
gr.File(label="Download Transcription")
],
title="Multi-Model Transcription",
description="Transcribe audio using multiple models.",
examples=[
["https://www.youtube.com/watch?v=daQ_hqA6HDo", "faster-whisper", 16, "yt-dlp", 0, None, False],
["https://mcdn.podbean.com/mf/web/dir5wty678b6g4vg/HoP_453_-_The_Price_is_Right_-_Law_and_Economics_in_the_Second_Scholastic5yxzh.mp3", "primeline/whisper-large-v3-german", 16, "ffmpeg", 0, 300, True],
["path/to/local/audio.mp3", "openai/whisper-large-v3", 16, "yt-dlp", 60, 180, False]
],
cache_examples=False,
live=True
)
iface.launch() |