Spaces:
Running
on
A10G
Running
on
A10G
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from .. import models | |
from ..models import register | |
class Bottleneck(nn.Module): | |
def __init__( | |
self, | |
bottleneck_dim: int, | |
input_dim: int, | |
output_dim: int, | |
token_nums: int, | |
regularizer=None, | |
**kwargs | |
): | |
super().__init__() | |
self.token_nums = token_nums | |
self.input_dim = input_dim | |
self.output_dim = output_dim | |
if bottleneck_dim > 0: | |
self.bottleneck_dim = bottleneck_dim | |
else: | |
assert self.input_dim == self.output_dim, "input_dim and output_dim must be the same when bottleneck_dim is not specified" | |
self.bottleneck_dim = self.input_dim | |
self.project_dim = self.bottleneck_dim | |
if self.bottleneck_dim > 0: | |
self.in_linear = nn.Linear(self.input_dim, self.project_dim) | |
self.out_linear = nn.Linear(self.bottleneck_dim, self.output_dim) | |
else: | |
self.in_linear = self.out_linear = lambda x: x | |
regularizer['args']['dim'] = self.bottleneck_dim | |
regularizer['args']['token_nums'] = self.token_nums | |
self.regularizer = models.make(regularizer) | |
def project_in(self, x): | |
assert len(x.shape) == 3, "Input shape must be (batch, n_tokens, e_dim)" | |
z = self.in_linear(x) | |
return z | |
def project_out(self, z_cat): | |
z = self.out_linear(z_cat) | |
return z | |
def decode(self, bottleneck_rep): | |
regularized_z = self.regularizer.decode(bottleneck_rep) | |
return self.project_out(regularized_z) | |
def forward(self, x): | |
z = self.project_in(x) | |
projected_z = z | |
regularized_output = self.regularizer(z) | |
x_hat = self.project_out(regularized_output['regularized_z']) | |
bottleneck_rep = regularized_output.pop('bottleneck_rep') | |
return { | |
'output': x_hat, | |
'bottleneck_rep': bottleneck_rep, | |
'projected_z': projected_z, | |
**regularized_output, | |
} | |
class SimVectorQuantizer(nn.Module): | |
def __init__( | |
self, | |
dim, | |
codebook_size, | |
l2_normalized=False, | |
same_index_shape=True, | |
stochastic=False, | |
stochastic_temperature=1.0, | |
**kwargs, | |
): | |
super().__init__() | |
self.codebook_size = codebook_size | |
self.dim = dim | |
assert isinstance(l2_normalized, bool) | |
self.l2_normalized = l2_normalized | |
self.stochastic = stochastic | |
self.eval_deterministic = False | |
self.default_stochastic_temperature = stochastic_temperature | |
if self.stochastic: | |
if stochastic_temperature > 0: # fixed temperature | |
self.stochastic_temperature_inv = 1 / stochastic_temperature | |
else: # set stochastic_temperature < 0 to use learnable temperature | |
self.stochastic_temperature_inv = nn.Parameter(torch.tensor(10.0)) | |
# for clear inference code, we remove the codebook init from LLM's embedding | |
self.embedding = nn.Embedding(self.codebook_size, self.dim) | |
self.embedding_proj = nn.Linear(self.dim, self.dim) | |
self.same_index_shape = same_index_shape | |
def set_eval_deterministic(self, deterministic=True): | |
self.eval_deterministic = deterministic | |
def set_stochastic_temperature(self, temperature): | |
self.stochastic_temperature_inv = 1 / temperature | |
def get_emb(self): | |
emb = self.embedding_proj(self.embedding.weight) | |
if self.l2_normalized: | |
emb = F.normalize(emb, p=2, dim=-1) | |
# assert emb.dtype == torch.float32, f"Embedding weight dtype is {emb.dtype}, expected float32" | |
return emb | |
def forward(self, z): | |
emb = self.get_emb() | |
z = z.to(emb) | |
# z = z.float() | |
assert len(z.shape) == 3, "Input shape must be (batch, n_tokens, e_dim)" | |
if self.l2_normalized: | |
z = F.normalize(z, p=2, dim=-1) | |
z_flattened = rearrange(z, 'b n d -> (b n) d') | |
if self.stochastic: | |
# sample the softmaxed cosine similarity | |
assert self.l2_normalized, "Stochastic sampling requires l2 normalization" | |
cos_sim = torch.einsum("bd,nd->bn", z_flattened, emb) | |
probs = F.softmax(cos_sim * self.stochastic_temperature_inv, dim=-1) | |
if self.eval_deterministic and not self.training: | |
q_indices = torch.argmax(probs, dim=-1) | |
else: | |
q_indices = torch.multinomial(probs, 1).squeeze(-1) | |
else: | |
d = ( | |
torch.sum(z_flattened**2, dim=1, keepdim=True) | |
+ torch.sum(emb**2, dim=1) | |
- 2 | |
* torch.einsum( | |
"bd,dn->bn", z_flattened, rearrange(emb, "n d -> d n") | |
) | |
) | |
q_indices = torch.argmin(d, dim=1) | |
quantized = F.embedding(q_indices, emb, self.embedding.padding_idx, self.embedding.max_norm, | |
self.embedding.norm_type, self.embedding.scale_grad_by_freq, self.embedding.sparse).view(z.shape) # (b, n, d) | |
# preserve gradients | |
quantized = z + (quantized - z).detach() | |
if self.same_index_shape: | |
q_indices = q_indices.reshape(quantized.shape[0], quantized.shape[1]) | |
return_dict = { | |
'unregularized_z': z, # but l2 normalized if l2_normalized=True | |
'emb': emb, # but l2 normalized if l2_normalized=True | |
'regularized_z': quantized, | |
'bottleneck_rep': q_indices | |
} | |
return return_dict | |
def get_codebook_entry(self, indices, shape=None): | |
# shape specifying (batch, height, width, channel) | |
indices_shape = indices.shape | |
indices_flatten = rearrange(indices, '... -> (...)') | |
# get quantized latent vectors | |
emb = self.get_emb() | |
z_q = F.embedding(indices_flatten, emb) | |
# z_q = self.embedding(indices_flatten) | |
if self.l2_normalized: | |
z_q = F.normalize(z_q, p=2, dim=-1) | |
if shape is not None: | |
z_q = z_q.reshape(shape) | |
else: | |
z_q = z_q.reshape([*indices_shape, self.dim]) | |
return z_q | |
def decode(self, indices): | |
return self.get_codebook_entry(indices) |