Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,30 @@
|
|
1 |
-
from
|
2 |
-
import transformers
|
3 |
-
from transformers import pipeline
|
4 |
|
5 |
-
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
10 |
-
model = pipeline("text-generation", model=model_name, temperature=1.0) # Set temperature to 1
|
11 |
|
12 |
-
def
|
13 |
-
|
14 |
-
|
15 |
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
# Create system message for OmniCode
|
24 |
-
system_message = f"<<SYS>>\nYou are a code teaching assistant named OmniCode created by Anusha K.\n<</SYS>>\n"
|
25 |
-
|
26 |
-
# Combine system message and user question
|
27 |
-
prompt = f"{system_message}\n{question}"
|
28 |
-
|
29 |
-
# Generate response using Code-Llama
|
30 |
-
try:
|
31 |
-
response = model(prompt, max_length=512, truncation=True)[0]["generated_text"]
|
32 |
-
return response.strip()
|
33 |
-
except Exception as e:
|
34 |
-
print(f"Error during generation: {e}")
|
35 |
-
return "I encountered an error while processing your question. Please try rephrasing it or providing more context."
|
36 |
-
|
37 |
-
@app.route("/", methods=["POST"])
|
38 |
-
def answer_question():
|
39 |
-
"""
|
40 |
-
Handles user-submitted questions and returns answers via POST request.
|
41 |
-
"""
|
42 |
-
question = request.form["question"]
|
43 |
-
answer = answer_code_questions(question)
|
44 |
-
return answer
|
45 |
|
46 |
if __name__ == "__main__":
|
47 |
-
|
|
|
|
|
|
|
|
1 |
+
from transformers import LlamaForCausalLM, CodeLlamaTokenizer
|
|
|
|
|
2 |
|
3 |
+
# Load pre-trained model and tokenizer
|
4 |
+
model_name = "codellama/CodeLlama-7b-hf" # You can replace it with your model name
|
5 |
+
tokenizer = CodeLlamaTokenizer.from_pretrained(model_name)
|
6 |
+
model = LlamaForCausalLM.from_pretrained(model_name)
|
7 |
|
8 |
+
# System message
|
9 |
+
system_message = "You are a code teaching assistant named OmniCode created by Anusha K. Answer all the code related questions being asked."
|
|
|
|
|
10 |
|
11 |
+
def generate_response(prompt, max_length=150, temperature=1.0):
|
12 |
+
input_text = system_message + "\n" + prompt
|
13 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
14 |
|
15 |
+
# Generate response
|
16 |
+
output = model.generate(input_ids,
|
17 |
+
max_length=max_length,
|
18 |
+
temperature=temperature,
|
19 |
+
pad_token_id=tokenizer.eos_token_id,
|
20 |
+
num_return_sequences=1)
|
21 |
|
22 |
+
# Decode and return the response
|
23 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
24 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
if __name__ == "__main__":
|
27 |
+
while True:
|
28 |
+
user_input = input("You: ")
|
29 |
+
response = generate_response(user_input)
|
30 |
+
print("OmniCode:", response)
|