Spaces:
Build error
Build error
File size: 1,649 Bytes
d4b57d9 a40fb2e d4b57d9 a40fb2e ade1e2f a40fb2e ade1e2f a40fb2e 6ada24f ade1e2f 6ada24f a40fb2e 6ada24f a40fb2e 6ada24f a40fb2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
from transformers import AutoTokenizer, T5ForConditionalGeneration
model_name = "allenai/t5-small-squad2-question-generation"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
def generate_questions(input_string, max_length=80, temperature=1.0, num_return_sequences=2,
num_beams=4, top_k=90, top_p=0.9):
input_ids = tokenizer.encode(input_string, return_tensors="pt")
res = model.generate(input_ids, max_length=max_length, num_return_sequences=num_return_sequences,
num_beams=num_beams, temperature=temperature, top_k=top_k, top_p=top_p)
output = tokenizer.batch_decode(res, skip_special_tokens=True)
return output
input_text = gr.inputs.Textbox(label="Enter some text:", default="Nicejob has increased our revenue 80% since signing up")
max_length = gr.inputs.Slider(10, 150, 80, label="Max Length")
temperature = gr.inputs.Slider(0.0, 1.0, 1.0, step=0.05, label="Temperature")
num_return_sequences = gr.inputs.Slider(1, 10, 2, label="Num Return Sequences")
num_beams = gr.inputs.Slider(1, 10, 4, label="Num Beams")
top_k = gr.inputs.Slider(0, 100, 90, label="Top-k")
top_p = gr.inputs.Slider(0.0, 1.0, 0.9, step=0.05, label="Top-p")
output_text = gr.outputs.Textbox(label="Generated questions:")
iface = gr.Interface(
generate_questions,
inputs=[input_text, max_length, temperature, num_return_sequences, num_beams, top_k, top_p],
outputs=output_text,
title="Question Generation",
description="Generate questions from text using the T5-SQuAD2 model.",
)
iface.launch()
|