Spaces:
Runtime error
Runtime error
import random | |
import cv2 | |
import numpy as np | |
from albumentations import DualTransform, ImageOnlyTransform | |
from albumentations.augmentations import functional as F | |
from albumentations.core.serialization import SERIALIZABLE_REGISTRY | |
from albumentations.core.transforms_interface import to_tuple | |
from isegm.utils.misc import (clamp_bbox, expand_bbox, get_bbox_from_mask, | |
get_labels_with_sizes) | |
class UniformRandomResize(DualTransform): | |
def __init__( | |
self, | |
scale_range=(0.9, 1.1), | |
interpolation=cv2.INTER_LINEAR, | |
always_apply=False, | |
p=1, | |
): | |
super().__init__(always_apply, p) | |
self.scale_range = scale_range | |
self.interpolation = interpolation | |
def get_params_dependent_on_targets(self, params): | |
scale = random.uniform(*self.scale_range) | |
height = int(round(params["image"].shape[0] * scale)) | |
width = int(round(params["image"].shape[1] * scale)) | |
return {"new_height": height, "new_width": width} | |
def apply( | |
self, img, new_height=0, new_width=0, interpolation=cv2.INTER_LINEAR, **params | |
): | |
return F.resize( | |
img, height=new_height, width=new_width, interpolation=interpolation | |
) | |
def apply_to_keypoint(self, keypoint, new_height=0, new_width=0, **params): | |
scale_x = new_width / params["cols"] | |
scale_y = new_height / params["rows"] | |
return F.keypoint_scale(keypoint, scale_x, scale_y) | |
def get_transform_init_args_names(self): | |
return "scale_range", "interpolation" | |
def targets_as_params(self): | |
return ["image"] | |
class ZoomIn(DualTransform): | |
def __init__( | |
self, | |
height, | |
width, | |
bbox_jitter=0.1, | |
expansion_ratio=1.4, | |
min_crop_size=200, | |
min_area=100, | |
always_resize=False, | |
always_apply=False, | |
p=0.5, | |
): | |
super(ZoomIn, self).__init__(always_apply, p) | |
self.height = height | |
self.width = width | |
self.bbox_jitter = to_tuple(bbox_jitter) | |
self.expansion_ratio = expansion_ratio | |
self.min_crop_size = min_crop_size | |
self.min_area = min_area | |
self.always_resize = always_resize | |
def apply(self, img, selected_object, bbox, **params): | |
if selected_object is None: | |
if self.always_resize: | |
img = F.resize(img, height=self.height, width=self.width) | |
return img | |
rmin, rmax, cmin, cmax = bbox | |
img = img[rmin : rmax + 1, cmin : cmax + 1] | |
img = F.resize(img, height=self.height, width=self.width) | |
return img | |
def apply_to_mask(self, mask, selected_object, bbox, **params): | |
if selected_object is None: | |
if self.always_resize: | |
mask = F.resize( | |
mask, | |
height=self.height, | |
width=self.width, | |
interpolation=cv2.INTER_NEAREST, | |
) | |
return mask | |
rmin, rmax, cmin, cmax = bbox | |
mask = mask[rmin : rmax + 1, cmin : cmax + 1] | |
if isinstance(selected_object, tuple): | |
layer_indx, mask_id = selected_object | |
obj_mask = mask[:, :, layer_indx] == mask_id | |
new_mask = np.zeros_like(mask) | |
new_mask[:, :, layer_indx][obj_mask] = mask_id | |
else: | |
obj_mask = mask == selected_object | |
new_mask = mask.copy() | |
new_mask[np.logical_not(obj_mask)] = 0 | |
new_mask = F.resize( | |
new_mask, | |
height=self.height, | |
width=self.width, | |
interpolation=cv2.INTER_NEAREST, | |
) | |
return new_mask | |
def get_params_dependent_on_targets(self, params): | |
instances = params["mask"] | |
is_mask_layer = len(instances.shape) > 2 | |
candidates = [] | |
if is_mask_layer: | |
for layer_indx in range(instances.shape[2]): | |
labels, areas = get_labels_with_sizes(instances[:, :, layer_indx]) | |
candidates.extend( | |
[ | |
(layer_indx, obj_id) | |
for obj_id, area in zip(labels, areas) | |
if area > self.min_area | |
] | |
) | |
else: | |
labels, areas = get_labels_with_sizes(instances) | |
candidates = [ | |
obj_id for obj_id, area in zip(labels, areas) if area > self.min_area | |
] | |
selected_object = None | |
bbox = None | |
if candidates: | |
selected_object = random.choice(candidates) | |
if is_mask_layer: | |
layer_indx, mask_id = selected_object | |
obj_mask = instances[:, :, layer_indx] == mask_id | |
else: | |
obj_mask = instances == selected_object | |
bbox = get_bbox_from_mask(obj_mask) | |
if isinstance(self.expansion_ratio, tuple): | |
expansion_ratio = random.uniform(*self.expansion_ratio) | |
else: | |
expansion_ratio = self.expansion_ratio | |
bbox = expand_bbox(bbox, expansion_ratio, self.min_crop_size) | |
bbox = self._jitter_bbox(bbox) | |
bbox = clamp_bbox(bbox, 0, obj_mask.shape[0] - 1, 0, obj_mask.shape[1] - 1) | |
return {"selected_object": selected_object, "bbox": bbox} | |
def _jitter_bbox(self, bbox): | |
rmin, rmax, cmin, cmax = bbox | |
height = rmax - rmin + 1 | |
width = cmax - cmin + 1 | |
rmin = int(rmin + random.uniform(*self.bbox_jitter) * height) | |
rmax = int(rmax + random.uniform(*self.bbox_jitter) * height) | |
cmin = int(cmin + random.uniform(*self.bbox_jitter) * width) | |
cmax = int(cmax + random.uniform(*self.bbox_jitter) * width) | |
return rmin, rmax, cmin, cmax | |
def apply_to_bbox(self, bbox, **params): | |
raise NotImplementedError | |
def apply_to_keypoint(self, keypoint, **params): | |
raise NotImplementedError | |
def targets_as_params(self): | |
return ["mask"] | |
def get_transform_init_args_names(self): | |
return ( | |
"height", | |
"width", | |
"bbox_jitter", | |
"expansion_ratio", | |
"min_crop_size", | |
"min_area", | |
"always_resize", | |
) | |
def remove_image_only_transforms(sdict): | |
if not "transforms" in sdict: | |
return sdict | |
keep_transforms = [] | |
for tdict in sdict["transforms"]: | |
cls = SERIALIZABLE_REGISTRY[tdict["__class_fullname__"]] | |
if "transforms" in tdict: | |
keep_transforms.append(remove_image_only_transforms(tdict)) | |
elif not issubclass(cls, ImageOnlyTransform): | |
keep_transforms.append(tdict) | |
sdict["transforms"] = keep_transforms | |
return sdict | |