Spaces:
Sleeping
Sleeping
IRIS classification task with AWS Lambda
Workflow: use of AWS lambda function for deployment
Steps to Deploy
Training the Model:
bash
python train.py
Building the docker image:
bash
docker build -t iris-lambda .
Running the docker container locally:
bash
docker run --name iris-lambda-cont -p 8080:8080 iris-lambda
Testing locally:
Use a tool like curl to send a test request:
bash
curl -XPOST "http://localhost:8080/2015-03-31/functions/function/invocations" -d '{"body": "{"features": [[6.5, 3.0, 5.8, 2.2], [6.1, 2.8, 4.7, 1.2]]}"}'
Deploy to AWS Lambda: Package the code and dependencies, then upload to AWS Lambda via the AWS Management Console or AWS CLI.
This setup provides a complete pipeline from training the model to deploying it on AWS Lambda.