Clement Vachet
Add README file
b645f1c
|
raw
history blame
802 Bytes

IRIS classification task with AWS Lambda

Workflow: use of AWS lambda function for deployment

Steps to Deploy

Training the Model:

bash

python train.py

Building the docker image:

bash

docker build -t iris-lambda .

Running the docker container locally:

bash

docker run --name iris-lambda-cont -p 8080:8080 iris-lambda

Testing locally:

Use a tool like curl to send a test request:

bash

curl -XPOST "http://localhost:8080/2015-03-31/functions/function/invocations" -d '{"body": "{"features": [[6.5, 3.0, 5.8, 2.2], [6.1, 2.8, 4.7, 1.2]]}"}'

Deploy to AWS Lambda: Package the code and dependencies, then upload to AWS Lambda via the AWS Management Console or AWS CLI.

This setup provides a complete pipeline from training the model to deploying it on AWS Lambda.