File size: 5,965 Bytes
e6f2a04 9d7b040 e6f2a04 9d7b040 e6f2a04 672baaa 97dcf92 e6f2a04 9d7b040 97dcf92 e6f2a04 672baaa 59908f1 e6f2a04 97dcf92 9d7b040 97dcf92 59908f1 9d7b040 e6f2a04 59908f1 97dcf92 9d7b040 97dcf92 9d7b040 97dcf92 59908f1 9d7b040 97dcf92 59908f1 97dcf92 59908f1 9d7b040 97dcf92 672baaa 9d7b040 59908f1 9d7b040 97dcf92 9d7b040 97dcf92 9d7b040 672baaa 59908f1 672baaa 97dcf92 9d7b040 97dcf92 9d7b040 97dcf92 59908f1 97dcf92 e6f2a04 59908f1 e6f2a04 97dcf92 59908f1 97dcf92 59908f1 97dcf92 59908f1 9d7b040 97dcf92 9d7b040 59908f1 97dcf92 59908f1 97dcf92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import os
import optuna
from optuna.trial import TrialState
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
from configs import *
import data_loader
from torch.utils.tensorboard import SummaryWriter
import time
import numpy as np
torch.cuda.empty_cache()
print(f"Using device: {DEVICE}")
EPOCHS = 10
# N_TRIALS = 10
# TIMEOUT = 5000
EARLY_STOPPING_PATIENCE = (
4 # Number of epochs with no improvement to trigger early stopping
)
# Create a TensorBoard writer
writer = SummaryWriter(log_dir="output/tensorboard/tuning")
# Function to create or modify data loaders with the specified batch size
def create_data_loaders(batch_size):
train_loader, valid_loader = data_loader.load_data(
COMBINED_DATA_DIR + "1",
preprocess,
batch_size=batch_size,
)
return train_loader, valid_loader
def rand_bbox(size, lam):
W = size[2]
H = size[3]
cut_rat = np.sqrt(1.0 - lam)
cut_w = np.int_(W * cut_rat)
cut_h = np.int_(H * cut_rat)
# uniform
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
def cutmix_data(input, target, alpha=1.0):
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = input.size()[0]
index = torch.randperm(batch_size)
rand_index = torch.randperm(input.size()[0])
bbx1, bby1, bbx2, bby2 = rand_bbox(input.size(), lam)
input[:, :, bbx1:bbx2, bby1:bby2] = input[rand_index, :, bbx1:bbx2, bby1:bby2]
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (input.size()[-1] * input.size()[-2]))
targets_a = target
targets_b = target[rand_index]
return input, targets_a, targets_b, lam
def cutmix_criterion(criterion, outputs, targets_a, targets_b, lam):
return lam * criterion(outputs, targets_a) + (1 - lam) * criterion(
outputs, targets_b
)
# Objective function for optimization
def objective(trial, model=MODEL):
model = model.to(DEVICE)
batch_size = trial.suggest_categorical("batch_size", [16, 32])
train_loader, valid_loader = create_data_loaders(batch_size)
lr = trial.suggest_float("lr", 1e-5, 1e-3, log=True)
optimizer = optim.Adam(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
gamma = trial.suggest_float("gamma", 0.1, 0.9, step=0.1)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=EPOCHS)
past_trials = 0 # Number of trials already completed
# Print best hyperparameters:
if past_trials > 0:
print("\nBest Hyperparameters:")
print(f"{study.best_trial.params}")
print(f"\n[INFO] Trial: {trial.number}")
print(f"Batch Size: {batch_size}")
print(f"Learning Rate: {lr}")
print(f"Gamma: {gamma}\n")
early_stopping_counter = 0
best_accuracy = 0.0
for epoch in range(EPOCHS):
model.train()
for batch_idx, (data, target) in enumerate(train_loader, 0):
data, target = data.to(DEVICE), target.to(DEVICE)
optimizer.zero_grad()
if model.__class__.__name__ == "GoogLeNet":
output = model(data).logits
else:
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
scheduler.step()
model.eval()
correct = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(valid_loader, 0):
data, target = data.to(DEVICE), target.to(DEVICE)
data, targets_a, targets_b, lam = cutmix_data(data, target, alpha=1)
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
accuracy = correct / len(valid_loader.dataset)
if accuracy >= 1.0:
print(f"Desired accuracy of 1.0 achieved. Stopping early.")
return float("inf")
# Log hyperparameters and accuracy to TensorBoard
writer.add_scalar("Accuracy", accuracy, trial.number)
writer.add_hparams(
{"batch_size": batch_size, "lr": lr, "gamma": gamma},
{"accuracy": accuracy},
)
print(f"[EPOCH {epoch + 1}] Accuracy: {accuracy:.4f}")
trial.report(accuracy, epoch)
if accuracy > best_accuracy:
best_accuracy = accuracy
early_stopping_counter = 0
else:
early_stopping_counter += 1
# Early stopping check
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
print(f"\nEarly stopping at epoch {epoch + 1}")
break
if trial.number > 10 and trial.params["lr"] < 1e-3 and best_accuracy < 0.7:
return float("inf")
past_trials += 1
return best_accuracy
if __name__ == "__main__":
hyperband_pruner = optuna.pruners.HyperbandPruner()
# Record the start time
start_time = time.time()
# storage = optuna.storages.InMemoryStorage()
study = optuna.create_study(
direction="maximize",
pruner=hyperband_pruner,
study_name="hyperparameter_tuning",
storage="sqlite:///" + MODEL.__class__.__name__ + ".sqlite3",
)
study.optimize(objective)
# Record the end time
end_time = time.time()
# Calculate the duration of hyperparameter tuning
tuning_duration = end_time - start_time
print(f"Hyperparameter tuning took {tuning_duration:.2f} seconds.")
best_trial = study.best_trial
print("\nBest Trial:")
print(f" Trial Number: {best_trial.number}")
print(f" Best Accuracy: {best_trial.value:.4f}")
print(" Hyperparameters:")
for key, value in best_trial.params.items():
print(f" {key}: {value}")
|