|
--- |
|
title: DmxMetric |
|
emoji: π |
|
colorFrom: purple |
|
colorTo: pink |
|
sdk: gradio |
|
sdk_version: 4.41.0 |
|
app_file: app.py |
|
pinned: false |
|
license: apache-2.0 |
|
tags: |
|
- evaluate |
|
- metric |
|
description: >- |
|
Evaluation function using lm-eval with d-Matrix integration. |
|
This function allows for the evaluation of language models across various tasks, |
|
with the option to use d-Matrix compressed models. For more information, see |
|
https://github.com/EleutherAI/lm-evaluation-harness and https://github.com/d-matrix-ai/dmx-compressor |
|
--- |
|
# Metric Card for dmxMetric |
|
|
|
## How to Use |
|
```python |
|
>>>import evaluate |
|
>>>metric = evaluate.load("d-matrix/dmxMetric", module_type="metric") |
|
>>>results = metric._compute(model="d-matrix/gpt2",revision="distilgpt2",tasks="wikitext",dmx_config="BASIC" ) |
|
>>>print(results) |
|
``` |
|
|
|
### Inputs |
|
- **model** (`str`): The name or path of the model to evaluate. |
|
- **tasks** (`Union[str, List[str]]`): The task or list of tasks to evaluate on. |
|
- **dmx_config** (`Optional[str]`): Configuration string for d-Matrix transformations, defaults to None. |
|
- **num_fewshot** (`Optional[int]`): Number of examples in few-shot context, defaults to None. |
|
- **batch_size** (`Optional[Union[int, str]]`): Batch size for evaluation, defaults to None. |
|
- **max_batch_size** (`Optional[int]`): Maximum batch size to try with automatic batch size detection, defaults to None. |
|
- **limit** (`Optional[Union[int, float]]`): Limit the number of examples per task, defaults to None. |
|
- **device** (`Optional[str]`): Device to run on. If None, defaults to 'cuda' if available, otherwise 'cpu'. |
|
- **revision** (`str`): Model revision to use, defaults to 'main'. |
|
- **trust_remote_code** (`bool`): Whether to trust remote code, defaults to False. |
|
- **log_samples** (`bool`): If True, logs all model outputs and documents, defaults to True. |
|
- **verbosity** (`str`): Logging verbosity level, defaults to 'INFO'. |
|
- **kwargs**: Additional keyword arguments to pass to `lm_eval.evaluate`. |
|
|
|
### Output Values |
|
- **results** (`dict`): A dictionary containing the evaluation results for each task. |
|
|
|
Output Example: |
|
```python |
|
{ |
|
'wikitext': { |
|
'alias': 'wikitext', |
|
'word_perplexity,none': 56.66175009356436, |
|
'word_perplexity_stderr,none': 'N/A', |
|
'byte_perplexity,none': 2.127521665015424, |
|
'byte_perplexity_stderr,none': 'N/A', |
|
'bits_per_byte,none': 1.0891738232631387, |
|
'bits_per_byte_stderr,none': 'N/A' |
|
} |
|
} |
|
``` |
|
|
|
This metric outputs a dictionary containing the evaluation results for each task. In this example, the results are shown for the 'wikitext' task. The output includes various perplexity and bits-per-byte metrics, along with their standard errors (where available). The specific metrics may include: |
|
|
|
- `alias`: The name or alias of the task. |
|
- `word_perplexity,none`: The perplexity calculated on a word level. |
|
- `word_perplexity_stderr,none`: The standard error of the word perplexity (if available). |
|
- `byte_perplexity,none`: The perplexity calculated on a byte level. |
|
- `byte_perplexity_stderr,none`: The standard error of the byte perplexity (if available). |
|
- `bits_per_byte,none`: The average number of bits required to encode each byte of the text. |
|
- `bits_per_byte_stderr,none`: The standard error of the bits per byte metric (if available). |
|
|
|
Note that 'N/A' values indicate that the standard error was not calculated or not available for that metric. |
|
|
|
## Citation(s) |
|
https://github.com/EleutherAI/lm-evaluation-harness |
|
|