File size: 6,748 Bytes
6a9b66f
 
 
806ab1d
6a9b66f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
806ab1d
708e7b3
6a9b66f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
from typing import Any

import gradio as gr
import openai
import pandas as pd
from IPython.display import Markdown, display
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import VectorstoreIndexCreator
from langchain.text_splitter import CharacterTextSplitter
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms import OpenAI
from langchain.vectorstores import DocArrayInMemorySearch
from uuid import uuid4

css_style = """
.gradio-container {
    font-family: "IBM Plex Mono";
}
"""


class myClass:
    def __init__(self) -> None:
        self.openapi = ""
        self.valid_key = False
        self.docs_ready = False
        self.status = "⚠️Waiting for documents and key⚠️"
        self.uuid = uuid4()
        pass

    def check_status(self):
        if self.docs_ready and self.valid_key:
            out = "✨Ready✨"
        elif self.docs_ready:
            out = "⚠️Waiting for key⚠️"
        elif self.valid_key:
            out = "⚠️Waiting for documents⚠️"
        else:
            out = "⚠️Waiting for documents and key⚠️"

        self.status = out

    def validate_key(self, myin):
        assert isinstance(myin, str)
        self.valid_key = True
        self.openai_api_key = myin.strip()
        self.embedding = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
        self.llm = OpenAI(openai_api_key=self.openai_api_key)

        self.check_status()
        return [self.status]

    def request_pathname(self, files, data):
        if files is None:
            self.docs_ready = False
            self.check_status()
            return (
                pd.DataFrame(data, columns=["filepath", "citation string", "key"]),
                self.status,
            )
        for file in files:
            # make sure we're not duplicating things in the dataset
            if file.name in [x[0] for x in data]:
                continue
            data.append([file.name, None, None])

        mydataset = pd.DataFrame(data, columns=["filepath", "citation string", "key"])
        validation_button = self.validate_dataset(mydataset)

        return mydataset, validation_button

    def validate_dataset(self, dataset):
        self.docs_ready = dataset.iloc[-1, 0] != ""
        self.dataset = dataset

        self.check_status()

        if self.status == "✨Ready✨":
            self.get_index()

        return self.status

    def get_index(self):
        if self.docs_ready and self.valid_key:
            # os.environ["OPENAI_API_KEY"] = self.openai_api_key

            # myfile = "Angela Merkel - Wikipedia.pdf"
            # loader = PyPDFLoader(file_path=myfile)
            loaders = [PyPDFLoader(f) for f in self.dataset["filepath"]]

            self.index = VectorstoreIndexCreator(
                vectorstore_cls=DocArrayInMemorySearch, 
                embedding=self.embedding,
                text_splitter = RecursiveCharacterTextSplitter(
                            # Set a really small chunk size, just to show.
                            chunk_size = 1000,
                            chunk_overlap  = 20,
                            length_function = len,
                            separators="."
            )

            ).from_loaders(loaders=loaders)

            # del os.environ["OPENAI_API_KEY"]

        pass

    def do_ask(self, question):
        # os.environ["OPENAI_API_KEY"] = self.openai_api_key
        # openai.api_key = self.openai_api_key

        if self.status == "✨Ready✨":
            # os.environ["OPENAI_API_KEY"] = self.openai_api_key

            response = self.index.query(question=question, llm=self.llm)
            # del os.environ["OPENAI_API_KEY"]
            yield response
        pass


def validate_key(myInstance: myClass, openai_api_key):
    if myInstance is None:
        myInstance = myClass()

    out = myInstance.validate_key(openai_api_key)
    return myInstance, *out


def request_pathname(myInstance: myClass, files, data):
    if myInstance is None:
        myInstance = myClass()
    out = myInstance.request_pathname(files, data)
    return myInstance, *out


def do_ask(myInstance: myClass, question):
    out = myInstance.do_ask(question)
    return myInstance, *out


with gr.Blocks(css=css_style) as demo:
    myInstance = gr.State()
    openai_api_key = gr.State("")
    docs = gr.State()
    data = gr.State([])
    index = gr.State()

    gr.Markdown(
        """
    # Document Question and Answer
    *By D8a.ai*
    Idea based on https://huggingface.co/spaces/whitead/paper-qa
    Significant advances in langchain have made it possible to simplify the code.
    This tool allows you to ask questions of your uploaded text, PDF documents.
    It uses OpenAI's GPT models, so you need to enter your API key below. This
    tool is under active development and currently uses a lot of tokens - up to 10,000
    for a single query. This is $0.10-0.20 per query, so please be careful!
    * [langchain](https://github.com/hwchase17/langchain) is the main library this tool utilizes.
    1. Enter API Key ([What is that?](https://platform.openai.com/account/api-keys))
    2. Upload your documents
    3. Ask questions
    """
    )

    openai_api_key = gr.Textbox(
        label="OpenAI API Key", placeholder="sk-...", type="password"
    )
    with gr.Tab("File upload"):
        uploaded_files = gr.File(
            label="Upload your pdf Dokument", file_count="multiple"
        )

    with gr.Accordion("See Docs:", open=False):
        dataset = gr.Dataframe(
            headers=["filepath", "citation string", "key"],
            datatype=["str", "str", "str"],
            col_count=(3, "fixed"),
            interactive=False,
            label="Documents and Citations",
            overflow_row_behaviour="paginate",
            max_rows=5,
        )

    buildb = gr.Textbox(
        "⚠️Waiting for documents and key...",
        label="Status",
        interactive=False,
        show_label=True,
        max_lines=1,
    )

    query = gr.Textbox(placeholder="Enter your question here...", label="Question")
    ask = gr.Button("Ask Question")
    answer = gr.Markdown(label="Answer")

    openai_api_key.change(
        validate_key, inputs=[myInstance, openai_api_key], outputs=[myInstance, buildb]
    )

    uploaded_files.change(
        request_pathname,
        inputs=[myInstance, uploaded_files, data],
        outputs=[myInstance, dataset, buildb],
    )

    ask.click(
        do_ask,
        inputs=[myInstance, query],
        outputs=[myInstance, answer],
    )




demo.queue(concurrency_count=20)
demo.launch(show_error=True)