File size: 7,246 Bytes
08ccc4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1757726
08ccc4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38fec76
 
 
 
 
 
 
 
 
 
 
 
08ccc4a
 
 
 
 
1757726
08ccc4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1757726
08ccc4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cf6b14
 
08ccc4a
 
 
38fec76
08ccc4a
c8542bb
277815f
08ccc4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38fec76
 
 
 
08ccc4a
 
 
 
 
 
 
 
 
 
 
 
 
38fec76
 
 
 
 
 
 
 
 
 
 
 
08ccc4a
db75068
 
c8542bb
08ccc4a
 
 
 
 
c8542bb
08ccc4a
 
b960193
da782d7
 
 
 
 
1b3b531
08ccc4a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

import torch
import matplotlib.pyplot as plt

from monai.networks.nets import SegResNet
from monai.inferers import sliding_window_inference

from monai.transforms import (
    Activations,
    AsDiscrete,
    Compose,
)

model = SegResNet(
    blocks_down=[1, 2, 2, 4],
    blocks_up=[1, 1, 1],
    init_filters=16,
    in_channels=4,
    out_channels=3,
    dropout_prob=0.2,
)

model.load_state_dict(
    torch.load("weights/model.pt", map_location=torch.device('cpu'))
)

# define inference method
VAL_AMP = True

def inference(input):

    def _compute(input):
        return sliding_window_inference(
            inputs=input,
            roi_size=(240, 240, 160),
            sw_batch_size=1,
            predictor=model,
            overlap=0.5,
        )

    if VAL_AMP:
        with torch.cuda.amp.autocast():
            return _compute(input)
    else:
        return _compute(input)


post_trans = Compose(
    [Activations(sigmoid=True), AsDiscrete(threshold=0.5)]
)

import gradio as gr

def load_sample1():
    return load_sample(1)

def load_sample2():
    return load_sample(2)

def load_sample3():
    return load_sample(3)

def load_sample4():
    return load_sample(4)

def load_sample5():
    return load_sample(5)

def load_sample6():
    return load_sample(6)

def load_sample7():
    return load_sample(7)

def load_sample8():
    return load_sample(8)

import torchvision

def load_sample(index):
    #sample_index = index

    sample = torch.load(f"samples/val{index-1}.pt")
    imgs = []
    for i in range(4):
        imgs.append(sample["image"][i, :, :, 70])

    pil_images = []
    for i in range(4):
        pil_images.append(torchvision.transforms.functional.to_pil_image(imgs[i]))

    imgs_label = []
    for i in range(3):
        imgs_label.append(sample["label"][i, :, :, 70])

    pil_images_label = []
    for i in range(3):
        pil_images_label.append(torchvision.transforms.functional.to_pil_image(imgs_label[i]))

    return [index, pil_images[0], pil_images[1], pil_images[2], pil_images[3],
            pil_images_label[0], pil_images_label[1], pil_images_label[2]]


def predict(sample_index):
    sample = torch.load(f"samples/val{sample_index-1}.pt")
    model.eval()
    with torch.no_grad():
        # select one image to evaluate and visualize the model output
        val_input = sample["image"].unsqueeze(0)
        roi_size = (128, 128, 64)
        sw_batch_size = 4
        val_output = inference(val_input)
        val_output = post_trans(val_output[0])

    imgs_output = []
    for i in range(3):
        imgs_output.append(val_output[i, :, :, 70])

    pil_images_output = []
    for i in range(3):
        pil_images_output.append(torchvision.transforms.functional.to_pil_image(imgs_output[i]))

    return [pil_images_output[0], pil_images_output[1], pil_images_output[2]]

with gr.Blocks(title="Brain tumor 3D segmentation with MONAIMNIST - ClassCat",
                    css=".gradio-container {background:azure;}"
               ) as demo:
    sample_index = gr.State([])

    gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">Brain tumor 3D segmentation with MONAI</div>""")

    gr.HTML("""<h4 style="color:navy;">1. Select an example, which includes input images and label images, by clicking "Example x" button.</h4>""")

    with gr.Row():
        input_image0 = gr.Image(label="image channel 0", type="pil", shape=(240, 240))
        input_image1 = gr.Image(label="image channel 1", type="pil", shape=(240, 240))
        input_image2 = gr.Image(label="image channel 2", type="pil", shape=(240, 240))
        input_image3 = gr.Image(label="image channel 3", type="pil", shape=(240, 240))

    with gr.Row():
        label_image0 = gr.Image(label="label channel 0", type="pil")
        label_image1 = gr.Image(label="label channel 1", type="pil")
        label_image2 = gr.Image(label="label channel 2", type="pil")

    with gr.Row():
        example1_btn = gr.Button("Example 1")
        example2_btn = gr.Button("Example 2")
        example3_btn = gr.Button("Example 3")
        example4_btn = gr.Button("Example 4")
        example5_btn = gr.Button("Example 5")
        example6_btn = gr.Button("Example 6")
        example7_btn = gr.Button("Example 7")
        example8_btn = gr.Button("Example 8")

        example1_btn.click(fn=load_sample1, inputs=None, 
                           outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
                                    label_image0, label_image1, label_image2])
        example2_btn.click(fn=load_sample2, inputs=None, 
                           outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
                                    label_image0, label_image1, label_image2])
        example3_btn.click(fn=load_sample3, inputs=None, 
                           outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
                                    label_image0, label_image1, label_image2])
        example4_btn.click(fn=load_sample4, inputs=None, 
                           outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
                                    label_image0, label_image1, label_image2])
        example5_btn.click(fn=load_sample5, inputs=None, 
                           outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
                                    label_image0, label_image1, label_image2])
        example6_btn.click(fn=load_sample6, inputs=None, 
                           outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
                                    label_image0, label_image1, label_image2])
        example7_btn.click(fn=load_sample7, inputs=None, 
                           outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
                                    label_image0, label_image1, label_image2])
        example8_btn.click(fn=load_sample8, inputs=None, 
                           outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
                                    label_image0, label_image1, label_image2])

    gr.HTML("""<br/>""")
    gr.HTML("""<h4 style="color:navy;">2. Then, click "Infer" button to predict segmentation images. It will take about 30 seconds (on cpu)</h4>""")

    with gr.Row():
        output_image0 = gr.Image(label="output channel 0", type="pil")
        output_image1 = gr.Image(label="output channel 1", type="pil")
        output_image2 = gr.Image(label="output channel 2", type="pil")
    
    send_btn = gr.Button("Infer")
    send_btn.click(fn=predict, inputs=[sample_index], outputs=[output_image0, output_image1, output_image2])

    gr.HTML("""<br/>""")
    gr.HTML("""<h4 style="color:navy;">Reference</h4>""")
    gr.HTML("""<ul>""")
    gr.HTML("""<li><a href="https://github.com/Project-MONAI/tutorials/blob/main/3d_segmentation/brats_segmentation_3d.ipynb" target="_blank">Brain tumor 3D segmentation with MONAI</a></li>""")
    gr.HTML("""</ul>""")


#demo.queue()
demo.launch(debug=True)



### EOF  ###