File size: 7,475 Bytes
08ccc4a 1757726 08ccc4a 38fec76 08ccc4a 1757726 08ccc4a 1757726 08ccc4a 3cf6b14 08ccc4a 38fec76 08ccc4a c8542bb 277815f 08ccc4a 38fec76 08ccc4a 38fec76 08ccc4a db75068 c8542bb 08ccc4a c8542bb 08ccc4a da782d7 1b3b531 08ccc4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import torch
import matplotlib.pyplot as plt
from monai.networks.nets import SegResNet
from monai.inferers import sliding_window_inference
from monai.transforms import (
Activations,
AsDiscrete,
Compose,
)
model = SegResNet(
blocks_down=[1, 2, 2, 4],
blocks_up=[1, 1, 1],
init_filters=16,
in_channels=4,
out_channels=3,
dropout_prob=0.2,
)
model.load_state_dict(
torch.load("weights/model.pt", map_location=torch.device('cpu'))
)
# define inference method
VAL_AMP = True
def inference(input):
def _compute(input):
return sliding_window_inference(
inputs=input,
roi_size=(240, 240, 160),
sw_batch_size=1,
predictor=model,
overlap=0.5,
)
if VAL_AMP:
with torch.cuda.amp.autocast():
return _compute(input)
else:
return _compute(input)
post_trans = Compose(
[Activations(sigmoid=True), AsDiscrete(threshold=0.5)]
)
import gradio as gr
def load_sample1():
return load_sample(1)
def load_sample2():
return load_sample(2)
def load_sample3():
return load_sample(3)
def load_sample4():
return load_sample(4)
def load_sample5():
return load_sample(5)
def load_sample6():
return load_sample(6)
def load_sample7():
return load_sample(7)
def load_sample8():
return load_sample(8)
import torchvision
def load_sample(index):
#sample_index = index
sample = torch.load(f"samples/val{index-1}.pt")
imgs = []
for i in range(4):
imgs.append(sample["image"][i, :, :, 70])
pil_images = []
for i in range(4):
pil_images.append(torchvision.transforms.functional.to_pil_image(imgs[i]))
imgs_label = []
for i in range(3):
imgs_label.append(sample["label"][i, :, :, 70])
pil_images_label = []
for i in range(3):
pil_images_label.append(torchvision.transforms.functional.to_pil_image(imgs_label[i]))
return [index, pil_images[0], pil_images[1], pil_images[2], pil_images[3],
pil_images_label[0], pil_images_label[1], pil_images_label[2]]
def predict(sample_index):
sample = torch.load(f"samples/val{sample_index-1}.pt")
model.eval()
with torch.no_grad():
# select one image to evaluate and visualize the model output
val_input = sample["image"].unsqueeze(0)
roi_size = (128, 128, 64)
sw_batch_size = 4
val_output = inference(val_input)
val_output = post_trans(val_output[0])
imgs_output = []
for i in range(3):
imgs_output.append(val_output[i, :, :, 70])
pil_images_output = []
for i in range(3):
pil_images_output.append(torchvision.transforms.functional.to_pil_image(imgs_output[i]))
return [pil_images_output[0], pil_images_output[1], pil_images_output[2]]
with gr.Blocks(title="Brain tumor 3D segmentation with MONAIMNIST - ClassCat",
css=".gradio-container {background:azure;}"
) as demo:
sample_index = gr.State([])
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">Brain tumor 3D segmentation with MONAI</div>""")
gr.HTML("""<h4 style="color:navy;">1. Select an example, which includes input images and label images, by clicking "Example x" button.</h4>""")
with gr.Row():
input_image0 = gr.Image(label="image channel 0", type="pil", shape=(240, 240))
input_image1 = gr.Image(label="image channel 1", type="pil", shape=(240, 240))
input_image2 = gr.Image(label="image channel 2", type="pil", shape=(240, 240))
input_image3 = gr.Image(label="image channel 3", type="pil", shape=(240, 240))
with gr.Row():
label_image0 = gr.Image(label="label channel 0", type="pil")
label_image1 = gr.Image(label="label channel 1", type="pil")
label_image2 = gr.Image(label="label channel 2", type="pil")
with gr.Row():
example1_btn = gr.Button("Example 1")
example2_btn = gr.Button("Example 2")
example3_btn = gr.Button("Example 3")
example4_btn = gr.Button("Example 4")
example5_btn = gr.Button("Example 5")
example6_btn = gr.Button("Example 6")
example7_btn = gr.Button("Example 7")
example8_btn = gr.Button("Example 8")
example1_btn.click(fn=load_sample1, inputs=None,
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
label_image0, label_image1, label_image2])
example2_btn.click(fn=load_sample2, inputs=None,
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
label_image0, label_image1, label_image2])
example3_btn.click(fn=load_sample3, inputs=None,
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
label_image0, label_image1, label_image2])
example4_btn.click(fn=load_sample4, inputs=None,
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
label_image0, label_image1, label_image2])
example5_btn.click(fn=load_sample5, inputs=None,
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
label_image0, label_image1, label_image2])
example6_btn.click(fn=load_sample6, inputs=None,
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
label_image0, label_image1, label_image2])
example7_btn.click(fn=load_sample7, inputs=None,
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
label_image0, label_image1, label_image2])
example8_btn.click(fn=load_sample8, inputs=None,
outputs=[sample_index, input_image0, input_image1, input_image2, input_image3,
label_image0, label_image1, label_image2])
gr.HTML("""<br/>""")
gr.HTML("""<h4 style="color:navy;">2. Then, click "Infer" button to predict segmentation images. It will take about 30 seconds (on cpu)</h4>""")
with gr.Row():
output_image0 = gr.Image(label="output channel 0", type="pil")
output_image1 = gr.Image(label="output channel 1", type="pil")
output_image2 = gr.Image(label="output channel 2", type="pil")
send_btn = gr.Button("Infer")
send_btn.click(fn=predict, inputs=[sample_index], outputs=[output_image0, output_image1, output_image2])
gr.HTML("""<h4 style="color:navy;">Reference</h4>""")
gr.HTML("""<ul>""")
gr.HTML("""<li><a href="https://github.com/Project-MONAI/tutorials/blob/main/3d_segmentation/brats_segmentation_3d.ipynb" target="_blank">Brain tumor 3D segmentation with MONAI</a></li>""")
gr.HTML("""</ul>""")
gr.HTML("""<div>)
<h4 style="color:navy;">Reference</h4>
<ul>
<li><a href="https://github.com/Project-MONAI/tutorials/blob/main/3d_segmentation/brats_segmentation_3d.ipynb" target="_blank">Brain tumor 3D segmentation with MONAI</a>
</ul>
</div>
""")
#demo.queue()
demo.launch(debug=True)
### EOF ###
|