Spaces:
Runtime error
Runtime error
File size: 11,484 Bytes
50b9662 6067469 94be4c7 50b9662 ab11bdd 50b9662 ab11bdd 81ccbca 6067469 fc73e59 50b9662 fc73e59 50b9662 fc73e59 50b9662 81ccbca ab11bdd 50b9662 81ccbca fc73e59 b58675c fc73e59 ab11bdd fc73e59 81ccbca fc73e59 81ccbca fc73e59 50b9662 81ccbca 50b9662 0002379 50b9662 fc73e59 50b9662 fc73e59 94be4c7 c8aa68b 94be4c7 6067469 50b9662 81ccbca 50b9662 fc73e59 50b9662 fc73e59 50b9662 81ccbca 50b9662 fc73e59 50b9662 fc73e59 50b9662 81ccbca 50b9662 6067469 50b9662 6067469 50b9662 7c89716 81ccbca 0002379 81ccbca 94be4c7 81ccbca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os.path
import random
from accelerate.utils import set_seed
from diffusers import StableDiffusionPipeline
from torch.cuda.amp import autocast
from torchvision import transforms
from StableDiffuser import StableDiffuser
from finetuning import FineTunedModel
import torch
from tqdm import tqdm
from isolate_rng import isolate_rng
from memory_efficiency import MemoryEfficiencyWrapper
from torch.utils.tensorboard import SummaryWriter
training_should_cancel = False
def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
validation_embeddings: torch.FloatTensor,
neutral_embeddings: torch.FloatTensor,
sample_embeddings: torch.FloatTensor,
logger: SummaryWriter, use_amp: bool,
global_step: int,
validation_seed: int = 555,
):
print("validating...")
with isolate_rng(include_cuda=True), torch.no_grad():
set_seed(validation_seed)
criteria = torch.nn.MSELoss()
negative_guidance = 1
val_count = 5
nsteps=50
num_validation_prompts = validation_embeddings.shape[0] // 2
for i in range(0, num_validation_prompts):
accumulated_loss = None
this_validation_embeddings = validation_embeddings[i*2:i*2+2]
for j in range(val_count):
iteration = random.randint(1, nsteps)
diffused_latents = get_diffused_latents(diffuser, nsteps, this_validation_embeddings, iteration, use_amp)
with autocast(enabled=use_amp):
positive_latents = diffuser.predict_noise(iteration, diffused_latents, this_validation_embeddings, guidance_scale=1)
neutral_latents = diffuser.predict_noise(iteration, diffused_latents, neutral_embeddings, guidance_scale=1)
with finetuner, autocast(enabled=use_amp):
negative_latents = diffuser.predict_noise(iteration, diffused_latents, this_validation_embeddings, guidance_scale=1)
loss = criteria(negative_latents, neutral_latents - (negative_guidance*(positive_latents - neutral_latents)))
accumulated_loss = (accumulated_loss or 0) + loss.item()
logger.add_scalar(f"loss/val_{i}", accumulated_loss/val_count, global_step=global_step)
num_samples = sample_embeddings.shape[0] // 2
for i in range(0, num_samples):
print(f'making sample {i}...')
with finetuner:
pipeline = StableDiffusionPipeline(vae=diffuser.vae,
text_encoder=diffuser.text_encoder,
tokenizer=diffuser.tokenizer,
unet=diffuser.unet,
scheduler=diffuser.scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False)
images = pipeline(prompt_embeds=sample_embeddings[i*2+1:i*2+2], negative_prompt_embeds=sample_embeddings[i*2:i*2+1],
num_inference_steps=50)
image_tensor = transforms.ToTensor()(images.images[0])
logger.add_image(f"samples/{i}", img_tensor=image_tensor, global_step=global_step)
"""
with finetuner, torch.cuda.amp.autocast(enabled=use_amp):
images = diffuser(
combined_embeddings=sample_embeddings[i*2:i*2+2],
n_steps=50
)
logger.add_images(f"samples/{i}", images)
"""
torch.cuda.empty_cache()
def train(repo_id_or_path, img_size, prompt, modules, freeze_modules, iterations, negative_guidance, lr, save_path,
use_adamw8bit=True, use_xformers=True, use_amp=True, use_gradient_checkpointing=False, seed=-1,
save_every_n_steps=-1, validate_every_n_steps=-1,
validation_prompts=[], sample_positive_prompts=[], sample_negative_prompts=[]):
diffuser = None
loss = None
optimizer = None
finetuner = None
negative_latents = None
neutral_latents = None
positive_latents = None
nsteps = 50
print(f"using img_size of {img_size}")
diffuser = StableDiffuser(scheduler='DDIM', repo_id_or_path=repo_id_or_path, native_img_size=img_size).to('cuda')
logger = SummaryWriter(log_dir=f"logs/{os.path.splitext(os.path.basename(save_path))[0]}")
memory_efficiency_wrapper = MemoryEfficiencyWrapper(diffuser=diffuser, use_amp=use_amp, use_xformers=use_xformers,
use_gradient_checkpointing=use_gradient_checkpointing )
with memory_efficiency_wrapper:
diffuser.train()
finetuner = FineTunedModel(diffuser, modules, frozen_modules=freeze_modules)
if use_adamw8bit:
print("using AdamW 8Bit optimizer")
import bitsandbytes as bnb
optimizer = bnb.optim.AdamW8bit(finetuner.parameters(),
lr=lr,
betas=(0.9, 0.999),
weight_decay=0.010,
eps=1e-8
)
else:
print("using Adam optimizer")
optimizer = torch.optim.Adam(finetuner.parameters(), lr=lr)
criteria = torch.nn.MSELoss()
pbar = tqdm(range(iterations))
with torch.no_grad():
neutral_text_embeddings = diffuser.get_cond_and_uncond_embeddings([''], n_imgs=1)
positive_text_embeddings = diffuser.get_cond_and_uncond_embeddings([prompt], n_imgs=1)
validation_embeddings = diffuser.get_cond_and_uncond_embeddings(validation_prompts, n_imgs=1)
sample_embeddings = diffuser.get_cond_and_uncond_embeddings(sample_positive_prompts, sample_negative_prompts, n_imgs=1)
#if use_amp:
# diffuser.vae = diffuser.vae.to(diffuser.vae.device, dtype=torch.float16)
#del diffuser.text_encoder
#del diffuser.tokenizer
torch.cuda.empty_cache()
if seed == -1:
seed = random.randint(0, 2 ** 30)
set_seed(int(seed))
prev_losses = []
start_loss = None
max_prev_loss_count = 10
try:
for i in pbar:
if training_should_cancel:
print("received cancellation request")
return None
with torch.no_grad():
optimizer.zero_grad()
iteration = torch.randint(1, nsteps - 1, (1,)).item()
with finetuner:
diffused_latents = get_diffused_latents(diffuser, nsteps, positive_text_embeddings, iteration, use_amp)
iteration = int(iteration / nsteps * 1000)
with autocast(enabled=use_amp):
positive_latents = diffuser.predict_noise(iteration, diffused_latents, positive_text_embeddings, guidance_scale=1)
neutral_latents = diffuser.predict_noise(iteration, diffused_latents, neutral_text_embeddings, guidance_scale=1)
with finetuner:
with autocast(enabled=use_amp):
negative_latents = diffuser.predict_noise(iteration, diffused_latents, positive_text_embeddings, guidance_scale=1)
positive_latents.requires_grad = False
neutral_latents.requires_grad = False
# loss = criteria(e_n, e_0) works the best try 5000 epochs
loss = criteria(negative_latents, neutral_latents - (negative_guidance*(positive_latents - neutral_latents)))
memory_efficiency_wrapper.step(optimizer, loss)
optimizer.zero_grad()
logger.add_scalar("loss", loss.item(), global_step=i)
# print moving average loss
prev_losses.append(loss.detach().clone())
if len(prev_losses) > max_prev_loss_count:
prev_losses.pop(0)
if start_loss is None:
start_loss = prev_losses[-1]
if len(prev_losses) >= max_prev_loss_count:
moving_average_loss = sum(prev_losses) / len(prev_losses)
print(
f"step {i}: loss={loss.item()} (avg={moving_average_loss.item()}, start ∆={(moving_average_loss - start_loss).item()}")
else:
print(f"step {i}: loss={loss.item()}")
if save_every_n_steps > 0 and ((i+1) % save_every_n_steps) == 0:
torch.save(finetuner.state_dict(), save_path + f"__step_{i+1}.pt")
if validate_every_n_steps > 0 and ((i+1) % validate_every_n_steps) == 0:
validate(diffuser, finetuner,
validation_embeddings=validation_embeddings,
sample_embeddings=sample_embeddings,
neutral_embeddings=neutral_text_embeddings,
logger=logger, use_amp=False, global_step=i)
torch.save(finetuner.state_dict(), save_path)
return save_path
finally:
del diffuser, loss, optimizer, finetuner, negative_latents, neutral_latents, positive_latents
torch.cuda.empty_cache()
def get_diffused_latents(diffuser, nsteps, text_embeddings, end_iteration, use_amp):
diffuser.set_scheduler_timesteps(nsteps)
latents = diffuser.get_initial_latents(1, n_prompts=1)
latents_steps, _ = diffuser.diffusion(
latents,
text_embeddings,
start_iteration=0,
end_iteration=end_iteration,
guidance_scale=3,
show_progress=False,
use_amp=use_amp
)
# because return_latents is not passed to diffuser.diffusion(), latents_steps should have only 1 entry
# but we take the "last" (-1) entry because paranoia
diffused_latents = latents_steps[-1]
diffuser.set_scheduler_timesteps(1000)
del latents_steps, latents
return diffused_latents
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--repo_id_or_path", required=True)
parser.add_argument("--img_size", type=int, required=False, default=512)
parser.add_argument('--prompt', required=True)
parser.add_argument('--modules', required=True)
parser.add_argument('--freeze_modules', nargs='+', required=True)
parser.add_argument('--save_path', required=True)
parser.add_argument('--iterations', type=int, required=True)
parser.add_argument('--lr', type=float, required=True)
parser.add_argument('--negative_guidance', type=float, required=True)
parser.add_argument('--seed', type=int, required=False, default=-1,
help='Training seed for reproducible results, or -1 to pick a random seed')
parser.add_argument('--use_adamw8bit', action='store_true')
parser.add_argument('--use_xformers', action='store_true')
parser.add_argument('--use_amp', action='store_true')
parser.add_argument('--use_gradient_checkpointing', action='store_true')
train(**vars(parser.parse_args())) |