File size: 14,634 Bytes
50b9662
6067469
6dc9635
bf1e262
94be4c7
 
50b9662
ab11bdd
50b9662
ab11bdd
81ccbca
 
 
 
 
6067469
fc73e59
50b9662
 
6dc9635
50b9662
 
 
 
 
 
 
 
6dc9635
 
50b9662
 
6dc9635
50b9662
 
 
 
 
 
6dc9635
2c1839c
bf1e262
 
 
6dc9635
 
2c1839c
 
50b9662
6dc9635
50b9662
 
 
 
 
 
 
fc73e59
50b9662
 
 
 
 
bf1e262
50b9662
bf1e262
50b9662
bf1e262
6dc9635
 
 
2c1839c
 
50b9662
 
 
 
 
 
 
 
 
6dc9635
 
 
 
 
 
50b9662
bf1e262
 
 
50b9662
 
 
 
 
 
 
 
 
 
 
fc73e59
bf1e262
50b9662
6dc9635
50b9662
 
 
ab11bdd
50b9662
 
 
81ccbca
fc73e59
 
bf1e262
fc73e59
 
 
b58675c
fc73e59
 
 
 
 
 
 
 
ab11bdd
fc73e59
 
81ccbca
fc73e59
81ccbca
fc73e59
50b9662
bf1e262
50b9662
 
81ccbca
6dc9635
 
 
 
 
 
 
50b9662
 
0002379
50b9662
 
fc73e59
50b9662
fc73e59
94be4c7
 
c8aa68b
94be4c7
2c1839c
 
 
 
6dc9635
 
2c1839c
6067469
 
 
50b9662
bf1e262
 
 
 
81ccbca
bf1e262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50b9662
 
 
 
 
 
 
 
6dc9635
 
50b9662
 
 
bf1e262
50b9662
 
 
 
 
6dc9635
50b9662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c89716
 
81ccbca
 
 
 
 
 
0002379
 
81ccbca
 
 
 
 
 
 
94be4c7
 
 
 
 
 
81ccbca
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os.path
import random
import multiprocessing
import math

from accelerate.utils import set_seed
from diffusers import StableDiffusionPipeline
from torch.cuda.amp import autocast
from torchvision import transforms

from StableDiffuser import StableDiffuser
from finetuning import FineTunedModel
import torch
from tqdm import tqdm

from isolate_rng import isolate_rng
from memory_efficiency import MemoryEfficiencyWrapper
from torch.utils.tensorboard import SummaryWriter

training_should_cancel = multiprocessing.Semaphore(0)

def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
             validation_embeddings: torch.FloatTensor,
             neutral_embeddings: torch.FloatTensor,
             sample_embeddings: torch.FloatTensor,
             logger: SummaryWriter, use_amp: bool,
             global_step: int,
             validation_seed: int = 555,
             batch_size: int = 1,
             sample_batch_size: int = 1 # might need to be smaller than batch_size
             ):
    print("validating...")
    assert batch_size==1, "batch_size != 1 not implemented work"
    with isolate_rng(include_cuda=True), torch.no_grad():
        set_seed(validation_seed)
        criteria = torch.nn.MSELoss()
        negative_guidance = 1

        nsteps=50
        num_validation_batches = validation_embeddings.shape[0] // (batch_size*2)

        val_count = max(1, 5 // num_validation_batches)

        val_total_loss = 0
        for i in tqdm(range(num_validation_batches)):
            if training_should_cancel.acquire(block=False):
                print("cancel requested, bailing")
                return
            accumulated_loss = None
            this_validation_embeddings = validation_embeddings[i*batch_size*2:(i+1)*batch_size*2]
            for j in range(val_count):
                iteration = random.randint(1, nsteps)
                diffused_latents = get_diffused_latents(diffuser, nsteps, this_validation_embeddings, iteration, use_amp)

                with autocast(enabled=use_amp):
                    positive_latents = diffuser.predict_noise(iteration, diffused_latents, this_validation_embeddings, guidance_scale=1)
                    neutral_latents = diffuser.predict_noise(iteration, diffused_latents, neutral_embeddings, guidance_scale=1)

                with finetuner, autocast(enabled=use_amp):
                    negative_latents = diffuser.predict_noise(iteration, diffused_latents, this_validation_embeddings, guidance_scale=1)

                loss = criteria(negative_latents, neutral_latents - (negative_guidance*(positive_latents - neutral_latents)))
                accumulated_loss = (accumulated_loss or 0) + loss.item()
                val_total_loss += loss.item()
            logger.add_scalar(f"loss/val_{i}", accumulated_loss/val_count, global_step=global_step)
        logger.add_scalar(f"loss/_val_all_combined", val_total_loss/(val_count*num_validation_batches), global_step=global_step)

        num_sample_batches = int(math.ceil(sample_embeddings.shape[0] / (sample_batch_size*2)))
        for i in tqdm(range(0, num_sample_batches)):
            print(f'making sample batch {i}...')
            if training_should_cancel.acquire(block=False):
                print("cancel requested, bailing")
                return
            with finetuner:
                pipeline = StableDiffusionPipeline(vae=diffuser.vae,
                                               text_encoder=diffuser.text_encoder,
                                               tokenizer=diffuser.tokenizer,
                                               unet=diffuser.unet,
                                               scheduler=diffuser.scheduler,
                                                   safety_checker=None,
                                                   feature_extractor=None,
                                               requires_safety_checker=False)
                batch_start = (i * sample_batch_size)*2
                next_batch_start = batch_start + sample_batch_size*2 + 1
                batch_negative_prompt_embeds = torch.cat([sample_embeddings[i+0:i+1] for i in range(batch_start, next_batch_start, 2)])
                batch_prompt_embeds = torch.cat([sample_embeddings[i+1:i+2] for i in range(batch_start, next_batch_start, 2)])
                images = pipeline(prompt_embeds=batch_prompt_embeds, #sample_embeddings[i*2+1:i*2+2],
                                  negative_prompt_embeds=batch_negative_prompt_embeds, # sample_embeddings[i*2:i*2+1],
                                  num_inference_steps=50)
                for image_index, image in enumerate(images.images):
                    image_tensor = transforms.ToTensor()(image)
                    logger.add_image(f"samples/{i*sample_batch_size+image_index}", img_tensor=image_tensor, global_step=global_step)

            """
            with finetuner, torch.cuda.amp.autocast(enabled=use_amp):
                images = diffuser(
                    combined_embeddings=sample_embeddings[i*2:i*2+2],
                    n_steps=50
                )
                logger.add_images(f"samples/{i}", images)
                """

        torch.cuda.empty_cache()

def train(repo_id_or_path, img_size, prompts, modules, freeze_modules, iterations, negative_guidance, lr, save_path,
          use_adamw8bit=True, use_xformers=True, use_amp=True, use_gradient_checkpointing=False, seed=-1,
          batch_size=1, sample_batch_size=1,
          save_every_n_steps=-1, validate_every_n_steps=-1,
          validation_prompts=[], sample_positive_prompts=[], sample_negative_prompts=[]):

    nsteps = 50
    print(f"using img_size of {img_size}")
    diffuser = StableDiffuser(scheduler='DDIM', repo_id_or_path=repo_id_or_path, native_img_size=img_size).to('cuda')
    logger = SummaryWriter(log_dir=f"logs/{os.path.splitext(os.path.basename(save_path))[0]}")

    memory_efficiency_wrapper = MemoryEfficiencyWrapper(diffuser=diffuser, use_amp=use_amp, use_xformers=use_xformers,
                                                        use_gradient_checkpointing=use_gradient_checkpointing )
    with (((((memory_efficiency_wrapper))))):
        diffuser.train()
        finetuner = FineTunedModel(diffuser, modules, frozen_modules=freeze_modules)
        if use_adamw8bit:
            print("using AdamW 8Bit optimizer")
            import bitsandbytes as bnb
            optimizer = bnb.optim.AdamW8bit(finetuner.parameters(),
                                            lr=lr,
                                            betas=(0.9, 0.999),
                                            weight_decay=0.010,
                                            eps=1e-8
                                            )
        else:
            print("using Adam optimizer")
            optimizer = torch.optim.Adam(finetuner.parameters(), lr=lr)
        criteria = torch.nn.MSELoss()

        pbar = tqdm(range(iterations))

        with torch.no_grad():
            neutral_text_embeddings = diffuser.get_cond_and_uncond_embeddings([''], n_imgs=1)
            all_positive_text_embeddings = diffuser.get_cond_and_uncond_embeddings(prompts, n_imgs=1)
            validation_embeddings = diffuser.get_cond_and_uncond_embeddings(validation_prompts, n_imgs=1)
            sample_embeddings = diffuser.get_cond_and_uncond_embeddings(sample_positive_prompts, sample_negative_prompts, n_imgs=1)

        for i, validation_prompt in enumerate(validation_prompts):
            logger.add_text(f"val/{i}", f"validation prompt: \"{validation_prompt}\"")
        for i in range(len(sample_positive_prompts)):
            positive_prompt = sample_positive_prompts[i]
            negative_prompt = "" if i >= len(sample_negative_prompts) else sample_negative_prompts[i]
            logger.add_text(f"sample/{i}", f"sample prompt: \"{positive_prompt}\", negative: \"{negative_prompt}\"")

        #if use_amp:
        #    diffuser.vae = diffuser.vae.to(diffuser.vae.device, dtype=torch.float16)

        #del diffuser.text_encoder
        #del diffuser.tokenizer

        torch.cuda.empty_cache()

        if seed == -1:
            seed = random.randint(0, 2 ** 30)
        set_seed(int(seed))

        validate(diffuser, finetuner,
                 validation_embeddings=validation_embeddings,
                 sample_embeddings=sample_embeddings,
                 neutral_embeddings=neutral_text_embeddings,
                 logger=logger, use_amp=False, global_step=0,
                 batch_size=batch_size, sample_batch_size=sample_batch_size)

        prev_losses = []
        start_loss = None
        max_prev_loss_count = 10
        try:
            loss=None
            negative_latents=None
            neutral_latents=None
            positive_latents=None

            num_prompts = all_positive_text_embeddings.shape[0] // 2
            for i in pbar:
                try:
                    loss = None
                    negative_latents = None
                    positive_latents = None
                    neutral_latents = None
                    diffused_latents = None
                    for j in tqdm(range(num_prompts)):
                        positive_text_embeddings = all_positive_text_embeddings[j*2:j*2+2]
                        if training_should_cancel.acquire(block=False):
                            print("cancel requested, bailing")
                            return None

                        with torch.no_grad():
                            optimizer.zero_grad()

                            iteration = torch.randint(1, nsteps - 1, (1,)).item()

                            with finetuner:
                                diffused_latents = get_diffused_latents(diffuser, nsteps, positive_text_embeddings, iteration, use_amp)

                            iteration = int(iteration / nsteps * 1000)

                            with autocast(enabled=use_amp):
                                positive_latents = diffuser.predict_noise(iteration, diffused_latents, positive_text_embeddings, guidance_scale=1)
                                neutral_latents = diffuser.predict_noise(iteration, diffused_latents, neutral_text_embeddings, guidance_scale=1)

                        with finetuner:
                            with autocast(enabled=use_amp):
                                negative_latents = diffuser.predict_noise(iteration, diffused_latents, positive_text_embeddings, guidance_scale=1)

                        positive_latents.requires_grad = False
                        neutral_latents.requires_grad = False

                        # loss = criteria(e_n, e_0) works the best try 5000 epochs
                        loss = criteria(negative_latents, neutral_latents - (negative_guidance*(positive_latents - neutral_latents)))
                        memory_efficiency_wrapper.backward(loss)

                    logger.add_scalar("loss", loss.item(), global_step=i)

                    # print moving average loss
                    prev_losses.append(loss.detach().clone())
                    if len(prev_losses) > max_prev_loss_count:
                        prev_losses.pop(0)
                    if start_loss is None:
                        start_loss = prev_losses[-1]
                    if len(prev_losses) >= max_prev_loss_count:
                        moving_average_loss = sum(prev_losses) / len(prev_losses)
                        print(
                            f"step {i}: loss={loss.item()} (avg={moving_average_loss.item()}, start ∆={(moving_average_loss - start_loss).item()}")
                    else:
                        print(f"step {i}: loss={loss.item()}")

                    memory_efficiency_wrapper.step(optimizer)
                finally:
                    del loss, negative_latents, positive_latents, neutral_latents, diffused_latents

                if save_every_n_steps > 0 and ((i+1) % save_every_n_steps) == 0:
                    torch.save(finetuner.state_dict(), save_path + f"__step_{i+1}.pt")
                if validate_every_n_steps > 0 and ((i+1) % validate_every_n_steps) == 0:
                    validate(diffuser, finetuner,
                             validation_embeddings=validation_embeddings,
                             sample_embeddings=sample_embeddings,
                             neutral_embeddings=neutral_text_embeddings,
                             logger=logger, use_amp=False, global_step=i,
                             batch_size=batch_size, sample_batch_size=sample_batch_size)
            torch.save(finetuner.state_dict(), save_path)
            return save_path
        finally:
            del diffuser, optimizer, finetuner
            torch.cuda.empty_cache()


def get_diffused_latents(diffuser, nsteps, text_embeddings, end_iteration, use_amp):
    diffuser.set_scheduler_timesteps(nsteps)
    latents = diffuser.get_initial_latents(len(text_embeddings)//2, n_prompts=1)
    latents_steps, _ = diffuser.diffusion(
        latents,
        text_embeddings,
        start_iteration=0,
        end_iteration=end_iteration,
        guidance_scale=3,
        show_progress=False,
        use_amp=use_amp
    )
    # because return_latents is not passed to diffuser.diffusion(), latents_steps should have only 1 entry
    # but we take the "last" (-1) entry because paranoia
    diffused_latents = latents_steps[-1]
    diffuser.set_scheduler_timesteps(1000)
    del latents_steps, latents
    return diffused_latents


if __name__ == '__main__':

    import argparse

    parser = argparse.ArgumentParser()

    parser.add_argument("--repo_id_or_path", required=True)
    parser.add_argument("--img_size", type=int, required=False, default=512)
    parser.add_argument('--prompt', required=True)
    parser.add_argument('--modules', required=True)
    parser.add_argument('--freeze_modules', nargs='+', required=True)
    parser.add_argument('--save_path', required=True)
    parser.add_argument('--iterations', type=int, required=True)
    parser.add_argument('--lr', type=float, required=True)
    parser.add_argument('--negative_guidance', type=float, required=True)
    parser.add_argument('--seed', type=int, required=False, default=-1,
                        help='Training seed for reproducible results, or -1 to pick a random seed')
    parser.add_argument('--use_adamw8bit', action='store_true')
    parser.add_argument('--use_xformers', action='store_true')
    parser.add_argument('--use_amp', action='store_true')
    parser.add_argument('--use_gradient_checkpointing', action='store_true')

    train(**vars(parser.parse_args()))