Spaces:
Runtime error
Runtime error
File size: 14,634 Bytes
50b9662 6067469 6dc9635 bf1e262 94be4c7 50b9662 ab11bdd 50b9662 ab11bdd 81ccbca 6067469 fc73e59 50b9662 6dc9635 50b9662 6dc9635 50b9662 6dc9635 50b9662 6dc9635 2c1839c bf1e262 6dc9635 2c1839c 50b9662 6dc9635 50b9662 fc73e59 50b9662 bf1e262 50b9662 bf1e262 50b9662 bf1e262 6dc9635 2c1839c 50b9662 6dc9635 50b9662 bf1e262 50b9662 fc73e59 bf1e262 50b9662 6dc9635 50b9662 ab11bdd 50b9662 81ccbca fc73e59 bf1e262 fc73e59 b58675c fc73e59 ab11bdd fc73e59 81ccbca fc73e59 81ccbca fc73e59 50b9662 bf1e262 50b9662 81ccbca 6dc9635 50b9662 0002379 50b9662 fc73e59 50b9662 fc73e59 94be4c7 c8aa68b 94be4c7 2c1839c 6dc9635 2c1839c 6067469 50b9662 bf1e262 81ccbca bf1e262 50b9662 6dc9635 50b9662 bf1e262 50b9662 6dc9635 50b9662 7c89716 81ccbca 0002379 81ccbca 94be4c7 81ccbca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import os.path
import random
import multiprocessing
import math
from accelerate.utils import set_seed
from diffusers import StableDiffusionPipeline
from torch.cuda.amp import autocast
from torchvision import transforms
from StableDiffuser import StableDiffuser
from finetuning import FineTunedModel
import torch
from tqdm import tqdm
from isolate_rng import isolate_rng
from memory_efficiency import MemoryEfficiencyWrapper
from torch.utils.tensorboard import SummaryWriter
training_should_cancel = multiprocessing.Semaphore(0)
def validate(diffuser: StableDiffuser, finetuner: FineTunedModel,
validation_embeddings: torch.FloatTensor,
neutral_embeddings: torch.FloatTensor,
sample_embeddings: torch.FloatTensor,
logger: SummaryWriter, use_amp: bool,
global_step: int,
validation_seed: int = 555,
batch_size: int = 1,
sample_batch_size: int = 1 # might need to be smaller than batch_size
):
print("validating...")
assert batch_size==1, "batch_size != 1 not implemented work"
with isolate_rng(include_cuda=True), torch.no_grad():
set_seed(validation_seed)
criteria = torch.nn.MSELoss()
negative_guidance = 1
nsteps=50
num_validation_batches = validation_embeddings.shape[0] // (batch_size*2)
val_count = max(1, 5 // num_validation_batches)
val_total_loss = 0
for i in tqdm(range(num_validation_batches)):
if training_should_cancel.acquire(block=False):
print("cancel requested, bailing")
return
accumulated_loss = None
this_validation_embeddings = validation_embeddings[i*batch_size*2:(i+1)*batch_size*2]
for j in range(val_count):
iteration = random.randint(1, nsteps)
diffused_latents = get_diffused_latents(diffuser, nsteps, this_validation_embeddings, iteration, use_amp)
with autocast(enabled=use_amp):
positive_latents = diffuser.predict_noise(iteration, diffused_latents, this_validation_embeddings, guidance_scale=1)
neutral_latents = diffuser.predict_noise(iteration, diffused_latents, neutral_embeddings, guidance_scale=1)
with finetuner, autocast(enabled=use_amp):
negative_latents = diffuser.predict_noise(iteration, diffused_latents, this_validation_embeddings, guidance_scale=1)
loss = criteria(negative_latents, neutral_latents - (negative_guidance*(positive_latents - neutral_latents)))
accumulated_loss = (accumulated_loss or 0) + loss.item()
val_total_loss += loss.item()
logger.add_scalar(f"loss/val_{i}", accumulated_loss/val_count, global_step=global_step)
logger.add_scalar(f"loss/_val_all_combined", val_total_loss/(val_count*num_validation_batches), global_step=global_step)
num_sample_batches = int(math.ceil(sample_embeddings.shape[0] / (sample_batch_size*2)))
for i in tqdm(range(0, num_sample_batches)):
print(f'making sample batch {i}...')
if training_should_cancel.acquire(block=False):
print("cancel requested, bailing")
return
with finetuner:
pipeline = StableDiffusionPipeline(vae=diffuser.vae,
text_encoder=diffuser.text_encoder,
tokenizer=diffuser.tokenizer,
unet=diffuser.unet,
scheduler=diffuser.scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False)
batch_start = (i * sample_batch_size)*2
next_batch_start = batch_start + sample_batch_size*2 + 1
batch_negative_prompt_embeds = torch.cat([sample_embeddings[i+0:i+1] for i in range(batch_start, next_batch_start, 2)])
batch_prompt_embeds = torch.cat([sample_embeddings[i+1:i+2] for i in range(batch_start, next_batch_start, 2)])
images = pipeline(prompt_embeds=batch_prompt_embeds, #sample_embeddings[i*2+1:i*2+2],
negative_prompt_embeds=batch_negative_prompt_embeds, # sample_embeddings[i*2:i*2+1],
num_inference_steps=50)
for image_index, image in enumerate(images.images):
image_tensor = transforms.ToTensor()(image)
logger.add_image(f"samples/{i*sample_batch_size+image_index}", img_tensor=image_tensor, global_step=global_step)
"""
with finetuner, torch.cuda.amp.autocast(enabled=use_amp):
images = diffuser(
combined_embeddings=sample_embeddings[i*2:i*2+2],
n_steps=50
)
logger.add_images(f"samples/{i}", images)
"""
torch.cuda.empty_cache()
def train(repo_id_or_path, img_size, prompts, modules, freeze_modules, iterations, negative_guidance, lr, save_path,
use_adamw8bit=True, use_xformers=True, use_amp=True, use_gradient_checkpointing=False, seed=-1,
batch_size=1, sample_batch_size=1,
save_every_n_steps=-1, validate_every_n_steps=-1,
validation_prompts=[], sample_positive_prompts=[], sample_negative_prompts=[]):
nsteps = 50
print(f"using img_size of {img_size}")
diffuser = StableDiffuser(scheduler='DDIM', repo_id_or_path=repo_id_or_path, native_img_size=img_size).to('cuda')
logger = SummaryWriter(log_dir=f"logs/{os.path.splitext(os.path.basename(save_path))[0]}")
memory_efficiency_wrapper = MemoryEfficiencyWrapper(diffuser=diffuser, use_amp=use_amp, use_xformers=use_xformers,
use_gradient_checkpointing=use_gradient_checkpointing )
with (((((memory_efficiency_wrapper))))):
diffuser.train()
finetuner = FineTunedModel(diffuser, modules, frozen_modules=freeze_modules)
if use_adamw8bit:
print("using AdamW 8Bit optimizer")
import bitsandbytes as bnb
optimizer = bnb.optim.AdamW8bit(finetuner.parameters(),
lr=lr,
betas=(0.9, 0.999),
weight_decay=0.010,
eps=1e-8
)
else:
print("using Adam optimizer")
optimizer = torch.optim.Adam(finetuner.parameters(), lr=lr)
criteria = torch.nn.MSELoss()
pbar = tqdm(range(iterations))
with torch.no_grad():
neutral_text_embeddings = diffuser.get_cond_and_uncond_embeddings([''], n_imgs=1)
all_positive_text_embeddings = diffuser.get_cond_and_uncond_embeddings(prompts, n_imgs=1)
validation_embeddings = diffuser.get_cond_and_uncond_embeddings(validation_prompts, n_imgs=1)
sample_embeddings = diffuser.get_cond_and_uncond_embeddings(sample_positive_prompts, sample_negative_prompts, n_imgs=1)
for i, validation_prompt in enumerate(validation_prompts):
logger.add_text(f"val/{i}", f"validation prompt: \"{validation_prompt}\"")
for i in range(len(sample_positive_prompts)):
positive_prompt = sample_positive_prompts[i]
negative_prompt = "" if i >= len(sample_negative_prompts) else sample_negative_prompts[i]
logger.add_text(f"sample/{i}", f"sample prompt: \"{positive_prompt}\", negative: \"{negative_prompt}\"")
#if use_amp:
# diffuser.vae = diffuser.vae.to(diffuser.vae.device, dtype=torch.float16)
#del diffuser.text_encoder
#del diffuser.tokenizer
torch.cuda.empty_cache()
if seed == -1:
seed = random.randint(0, 2 ** 30)
set_seed(int(seed))
validate(diffuser, finetuner,
validation_embeddings=validation_embeddings,
sample_embeddings=sample_embeddings,
neutral_embeddings=neutral_text_embeddings,
logger=logger, use_amp=False, global_step=0,
batch_size=batch_size, sample_batch_size=sample_batch_size)
prev_losses = []
start_loss = None
max_prev_loss_count = 10
try:
loss=None
negative_latents=None
neutral_latents=None
positive_latents=None
num_prompts = all_positive_text_embeddings.shape[0] // 2
for i in pbar:
try:
loss = None
negative_latents = None
positive_latents = None
neutral_latents = None
diffused_latents = None
for j in tqdm(range(num_prompts)):
positive_text_embeddings = all_positive_text_embeddings[j*2:j*2+2]
if training_should_cancel.acquire(block=False):
print("cancel requested, bailing")
return None
with torch.no_grad():
optimizer.zero_grad()
iteration = torch.randint(1, nsteps - 1, (1,)).item()
with finetuner:
diffused_latents = get_diffused_latents(diffuser, nsteps, positive_text_embeddings, iteration, use_amp)
iteration = int(iteration / nsteps * 1000)
with autocast(enabled=use_amp):
positive_latents = diffuser.predict_noise(iteration, diffused_latents, positive_text_embeddings, guidance_scale=1)
neutral_latents = diffuser.predict_noise(iteration, diffused_latents, neutral_text_embeddings, guidance_scale=1)
with finetuner:
with autocast(enabled=use_amp):
negative_latents = diffuser.predict_noise(iteration, diffused_latents, positive_text_embeddings, guidance_scale=1)
positive_latents.requires_grad = False
neutral_latents.requires_grad = False
# loss = criteria(e_n, e_0) works the best try 5000 epochs
loss = criteria(negative_latents, neutral_latents - (negative_guidance*(positive_latents - neutral_latents)))
memory_efficiency_wrapper.backward(loss)
logger.add_scalar("loss", loss.item(), global_step=i)
# print moving average loss
prev_losses.append(loss.detach().clone())
if len(prev_losses) > max_prev_loss_count:
prev_losses.pop(0)
if start_loss is None:
start_loss = prev_losses[-1]
if len(prev_losses) >= max_prev_loss_count:
moving_average_loss = sum(prev_losses) / len(prev_losses)
print(
f"step {i}: loss={loss.item()} (avg={moving_average_loss.item()}, start ∆={(moving_average_loss - start_loss).item()}")
else:
print(f"step {i}: loss={loss.item()}")
memory_efficiency_wrapper.step(optimizer)
finally:
del loss, negative_latents, positive_latents, neutral_latents, diffused_latents
if save_every_n_steps > 0 and ((i+1) % save_every_n_steps) == 0:
torch.save(finetuner.state_dict(), save_path + f"__step_{i+1}.pt")
if validate_every_n_steps > 0 and ((i+1) % validate_every_n_steps) == 0:
validate(diffuser, finetuner,
validation_embeddings=validation_embeddings,
sample_embeddings=sample_embeddings,
neutral_embeddings=neutral_text_embeddings,
logger=logger, use_amp=False, global_step=i,
batch_size=batch_size, sample_batch_size=sample_batch_size)
torch.save(finetuner.state_dict(), save_path)
return save_path
finally:
del diffuser, optimizer, finetuner
torch.cuda.empty_cache()
def get_diffused_latents(diffuser, nsteps, text_embeddings, end_iteration, use_amp):
diffuser.set_scheduler_timesteps(nsteps)
latents = diffuser.get_initial_latents(len(text_embeddings)//2, n_prompts=1)
latents_steps, _ = diffuser.diffusion(
latents,
text_embeddings,
start_iteration=0,
end_iteration=end_iteration,
guidance_scale=3,
show_progress=False,
use_amp=use_amp
)
# because return_latents is not passed to diffuser.diffusion(), latents_steps should have only 1 entry
# but we take the "last" (-1) entry because paranoia
diffused_latents = latents_steps[-1]
diffuser.set_scheduler_timesteps(1000)
del latents_steps, latents
return diffused_latents
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--repo_id_or_path", required=True)
parser.add_argument("--img_size", type=int, required=False, default=512)
parser.add_argument('--prompt', required=True)
parser.add_argument('--modules', required=True)
parser.add_argument('--freeze_modules', nargs='+', required=True)
parser.add_argument('--save_path', required=True)
parser.add_argument('--iterations', type=int, required=True)
parser.add_argument('--lr', type=float, required=True)
parser.add_argument('--negative_guidance', type=float, required=True)
parser.add_argument('--seed', type=int, required=False, default=-1,
help='Training seed for reproducible results, or -1 to pick a random seed')
parser.add_argument('--use_adamw8bit', action='store_true')
parser.add_argument('--use_xformers', action='store_true')
parser.add_argument('--use_amp', action='store_true')
parser.add_argument('--use_gradient_checkpointing', action='store_true')
train(**vars(parser.parse_args())) |