chatPDF / app.py
dammy's picture
Update app.py
59b084c
raw
history blame
3.84 kB
import gradio as gr
from langchain.document_loaders import PDFMinerLoader, PyMuPDFLoader
from langchain.text_splitter import CharacterTextSplitter
import chromadb
import chromadb.config
from chromadb.config import Settings
from transformers import T5ForConditionalGeneration, AutoTokenizer
import torch
import uuid
from sentence_transformers import SentenceTransformer
import os
#
model_name = 'google/flan-t5-base'
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
ST_name = 'sentence-transformers/sentence-t5-base'
st_model = SentenceTransformer(ST_name)
client = chromadb.Client()
collection = client.create_collection("my_database")
def get_context(query_text):
query_emb = st_model.encode(query_text)
query_response = collection.query(query_embeddings=query_emb.tolist(), n_results=4)
context = query_response['documents'][0][0]
context = context.replace('\n', ' ').replace(' ', ' ')
return context
def local_query(query, context):
t5query = """Using the available context, please answer the question.
If you are not sure please say I don't know.
Context: {}
Question: {}
""".format(context, query)
inputs = tokenizer(t5query, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
return tokenizer.batch_decode(outputs, skip_special_tokens=True)
def run_query(btn, history, query):
context = get_context(query)
result = local_query(query, context)
history.append((query, str(result[0])))
return history, ""
def upload_pdf(file):
try:
if file is not None:
global collection
file_name = file.name
loader = PDFMinerLoader(file_name)
doc = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(doc)
texts = [i.page_content for i in texts]
doc_emb = st_model.encode(texts)
doc_emb = doc_emb.tolist()
ids = [str(uuid.uuid1()) for _ in doc_emb]
collection.add(
embeddings=doc_emb,
documents=texts,
ids=ids
)
return 'Successfully uploaded!'
else:
return "No file uploaded."
except Exception as e:
return f"An error occurred: {e}"
with gr.Blocks() as demo:
btn = gr.UploadButton("Upload a PDF", file_types=[".pdf"])
output = gr.Textbox(label="Output Box", style={"height": "100px", "margin-top": "20px"})
chatbot = gr.Chatbot(height=240)
with gr.Row():
with gr.Column(scale=0.70):
txt = gr.Textbox(
show_label=False,
placeholder="Enter a question",
)
# with gr.Blocks() as demo:
# btn = gr.UploadButton("Upload a PDF", file_types=[".pdf"])
# output = gr.Textbox(label="Output Box", style={"height": "100px", "margin-top": "20px"})
# chatbot = gr.Chatbot(height=240, placeholder="Ask me anything...", style={"margin-top": "20px"})
# with gr.Row(style={"margin-top": "20px"}):
# with gr.Column(scale=0.70):
# # Styled Textbox
# txt = gr.Textbox(
# show_label=False,
# placeholder="Enter a question",
# style={"width": "100%", "height": "100px", "margin-bottom": "10px"}
# )
# # Event handler for uploading a PDF
# btn.upload(fn=upload_pdf, inputs=[btn], outputs=[output])
# txt.submit(run_query, [btn, chatbot, txt], [chatbot, txt])
gr.close_all()
demo.queue().launch()