Spaces:
Sleeping
Sleeping
File size: 4,390 Bytes
41f37dc dd7dd6e 41f37dc dd7dd6e 41f37dc 8f49668 dd7dd6e 41f37dc dd7dd6e 8f49668 dd7dd6e 41f37dc dd7dd6e 41f37dc dd7dd6e 41f37dc dd7dd6e 41f37dc dd7dd6e 41f37dc 562d36e 41f37dc dd7dd6e 562d36e dd7dd6e 41f37dc dd7dd6e 41f37dc dd7dd6e 562d36e dd7dd6e 41f37dc 61167a1 562d36e 41f37dc dd7dd6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import os
from datasets.filesystems import S3FileSystem
import s3fs
import boto3
from pdf2image import convert_from_path
import csv
from PIL import Image
import gradio as gr
# AWS and S3 Initialization with environment variables
aws_access_key_id = os.getenv('AWS_ACCESS_KEY')
aws_secret_access_key = os.getenv('AWS_SECRET_KEY')
region_name = os.getenv('AWS_REGION')
s3_bucket = os.getenv('AWS_BUCKET')
s3fs = S3FileSystem(key=aws_access_key_id, secret=aws_secret_access_key, region=region_name)
textract_client = boto3.client('textract', region_name=region_name)
def upload_file_to_s3(file_path, bucket, object_name=None):
if object_name is None:
object_name = os.path.basename(file_path)
try:
with open(file_path, "rb") as f:
s3fs.put(file_path, f"s3://{bucket}/{object_name}")
return object_name
except FileNotFoundError:
print("The file was not found")
return None
def process_image(file_path, s3_bucket, textract_client):
s3_object_key = upload_file_to_s3(file_path, s3_bucket)
if not s3_object_key:
return None
response = textract_client.analyze_document(
Document={'S3Object': {'Bucket': s3_bucket, 'Name': s3_object_key}},
FeatureTypes=["TABLES"]
)
return response
def generate_table_csv(tables, blocks_map, csv_output_path):
with open(csv_output_path, 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
for table in tables:
rows = get_rows_columns_map(table, blocks_map)
for row_index, cols in rows.items():
row = []
for col_index in range(1, max(cols.keys()) + 1):
row.append(cols.get(col_index, ""))
writer.writerow(row)
def get_rows_columns_map(table_result, blocks_map):
rows = {}
for relationship in table_result['Relationships']:
if relationship['Type'] == 'CHILD':
for child_id in relationship['Ids']:
cell = blocks_map[child_id]
if 'RowIndex' in cell and 'ColumnIndex' in cell:
row_index = cell['RowIndex']
col_index = cell['ColumnIndex']
if row_index not in rows:
rows[row_index] = {}
rows[row_index][col_index] = get_text(cell, blocks_map)
return rows
def get_text(result, blocks_map):
text = ''
if 'Relationships' in result:
for relationship in result['Relationships']:
if relationship['Type'] == 'CHILD':
for child_id in relationship['Ids']:
word = blocks_map[child_id]
if word['BlockType'] == 'WORD':
text += word['Text'] + ' '
if word['BlockType'] == 'SELECTION_ELEMENT':
if word['SelectionStatus'] == 'SELECTED':
text += 'X '
return text.strip()
def process_file_and_generate_csv(file_path):
# The file_path is directly usable; no need to check for attributes or methods
csv_output_path = "/tmp/output.csv"
if file_path.lower().endswith(('.png', '.jpg', '.jpeg')):
images = [Image.open(file_path)]
else:
# Convert PDF or other supported formats to images
images = convert_from_path(file_path)
for i, image in enumerate(images):
image_path = f"/tmp/image_{i}.jpg"
image.save(image_path, 'JPEG')
response = process_image(image_path, s3_bucket, textract_client)
if response:
blocks = response['Blocks']
blocks_map = {block['Id']: block for block in blocks}
tables = [block for block in blocks if block['BlockType'] == "TABLE"]
generate_table_csv(tables, blocks_map, csv_output_path)
# No need to remove the original file_path; Gradio handles temporary file cleanup
# Return the CSV output path and a success message for Gradio to handle
return csv_output_path, "Processing completed successfully!"
# Gradio Interface
iface = gr.Interface(
fn=process_file_and_generate_csv,
inputs=gr.File(label="Upload your file (PDF, PNG, JPG, TIFF)"),
outputs=[gr.File(label="Download Generated CSV"), "text"],
description="Upload a document to extract tables into a CSV file."
)
if __name__ == "__main__":
iface.launch()
|