File size: 4,390 Bytes
41f37dc
dd7dd6e
 
 
41f37dc
dd7dd6e
41f37dc
 
8f49668
dd7dd6e
41f37dc
 
 
 
 
dd7dd6e
 
8f49668
dd7dd6e
41f37dc
dd7dd6e
41f37dc
dd7dd6e
 
41f37dc
 
 
 
 
dd7dd6e
 
41f37dc
 
 
 
 
 
 
 
 
dd7dd6e
 
 
 
 
 
 
 
 
 
41f37dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
562d36e
 
 
41f37dc
dd7dd6e
 
 
 
 
562d36e
dd7dd6e
41f37dc
 
dd7dd6e
 
 
 
41f37dc
 
 
 
dd7dd6e
 
562d36e
 
 
dd7dd6e
41f37dc
61167a1
562d36e
41f37dc
 
 
 
 
 
 
 
dd7dd6e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
from datasets.filesystems import S3FileSystem
import s3fs
import boto3
from pdf2image import convert_from_path
import csv
from PIL import Image
import gradio as gr

# AWS and S3 Initialization with environment variables
aws_access_key_id = os.getenv('AWS_ACCESS_KEY')
aws_secret_access_key = os.getenv('AWS_SECRET_KEY')
region_name = os.getenv('AWS_REGION')
s3_bucket = os.getenv('AWS_BUCKET')

s3fs = S3FileSystem(key=aws_access_key_id, secret=aws_secret_access_key, region=region_name)
textract_client = boto3.client('textract', region_name=region_name)

def upload_file_to_s3(file_path, bucket, object_name=None):
    if object_name is None:
        object_name = os.path.basename(file_path)
    try:
        with open(file_path, "rb") as f:
            s3fs.put(file_path, f"s3://{bucket}/{object_name}")
        return object_name
    except FileNotFoundError:
        print("The file was not found")
        return None

def process_image(file_path, s3_bucket, textract_client):
    s3_object_key = upload_file_to_s3(file_path, s3_bucket)
    if not s3_object_key:
        return None

    response = textract_client.analyze_document(
        Document={'S3Object': {'Bucket': s3_bucket, 'Name': s3_object_key}},
        FeatureTypes=["TABLES"]
    )
    return response

def generate_table_csv(tables, blocks_map, csv_output_path):
    with open(csv_output_path, 'w', newline='') as csvfile:
        writer = csv.writer(csvfile)
        for table in tables:
            rows = get_rows_columns_map(table, blocks_map)
            for row_index, cols in rows.items():
                row = []
                for col_index in range(1, max(cols.keys()) + 1):
                    row.append(cols.get(col_index, ""))
                writer.writerow(row)

def get_rows_columns_map(table_result, blocks_map):
    rows = {}
    for relationship in table_result['Relationships']:
        if relationship['Type'] == 'CHILD':
            for child_id in relationship['Ids']:
                cell = blocks_map[child_id]
                if 'RowIndex' in cell and 'ColumnIndex' in cell:
                    row_index = cell['RowIndex']
                    col_index = cell['ColumnIndex']
                    if row_index not in rows:
                        rows[row_index] = {}
                    rows[row_index][col_index] = get_text(cell, blocks_map)
    return rows

def get_text(result, blocks_map):
    text = ''
    if 'Relationships' in result:
        for relationship in result['Relationships']:
            if relationship['Type'] == 'CHILD':
                for child_id in relationship['Ids']:
                    word = blocks_map[child_id]
                    if word['BlockType'] == 'WORD':
                        text += word['Text'] + ' '
                    if word['BlockType'] == 'SELECTION_ELEMENT':
                        if word['SelectionStatus'] == 'SELECTED':
                            text += 'X '
    return text.strip()
    
def process_file_and_generate_csv(file_path):
    # The file_path is directly usable; no need to check for attributes or methods

    csv_output_path = "/tmp/output.csv"
    
    if file_path.lower().endswith(('.png', '.jpg', '.jpeg')):
        images = [Image.open(file_path)]
    else:
        # Convert PDF or other supported formats to images
        images = convert_from_path(file_path)

    for i, image in enumerate(images):
        image_path = f"/tmp/image_{i}.jpg"
        image.save(image_path, 'JPEG')

        response = process_image(image_path, s3_bucket, textract_client)
        if response:
            blocks = response['Blocks']
            blocks_map = {block['Id']: block for block in blocks}
            tables = [block for block in blocks if block['BlockType'] == "TABLE"]
            generate_table_csv(tables, blocks_map, csv_output_path)

    # No need to remove the original file_path; Gradio handles temporary file cleanup

    # Return the CSV output path and a success message for Gradio to handle
    return csv_output_path, "Processing completed successfully!"



# Gradio Interface
iface = gr.Interface(
    fn=process_file_and_generate_csv,
    inputs=gr.File(label="Upload your file (PDF, PNG, JPG, TIFF)"),
    outputs=[gr.File(label="Download Generated CSV"), "text"],
    description="Upload a document to extract tables into a CSV file."
)

if __name__ == "__main__":
    iface.launch()