Spaces:
Sleeping
Sleeping
import streamlit as st | |
import networkx as nx | |
import plotly.graph_objects as go | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from streamlit_agraph import agraph, Node, Edge, Config | |
def plot_compatibility(plants, compatibility_matrix, is_mini=False): | |
# Create the graph | |
G = nx.Graph() | |
G.add_nodes_from(plants) | |
for i in range(len(plants)): | |
for j in range(i + 1, len(plants)): | |
if compatibility_matrix[i][j] == 0: | |
G.add_edge(plants[i], plants[j], color="dimgrey") | |
else: | |
G.add_edge( | |
plants[i], | |
plants[j], | |
color="green" | |
if compatibility_matrix[i][j] == 1 | |
else "mediumvioletred", | |
) | |
# Generate positions for the nodes | |
pos = nx.spring_layout(G) | |
# Create node trace | |
node_trace = go.Scatter( | |
x=[pos[node][0] for node in G.nodes()], | |
y=[pos[node][1] for node in G.nodes()], | |
text=list(G.nodes()), | |
mode="markers+text", | |
textposition="top center", | |
hoverinfo="text", | |
marker=dict( | |
size=40, | |
color="lightblue", | |
line_width=2, | |
), | |
) | |
# Create edge trace | |
edge_trace = go.Scatter( | |
x=[], y=[], line=dict(width=1, color="dimgrey"), hoverinfo="none", mode="lines" | |
) | |
# Add coordinates to edge trace | |
for edge in G.edges(): | |
x0, y0 = pos[edge[0]] | |
x1, y1 = pos[edge[1]] | |
edge_trace["x"] += tuple([x0, x1, None]) | |
edge_trace["y"] += tuple([y0, y1, None]) | |
# Create edge traces for colored edges | |
edge_traces = [] | |
edge_legend = set() # Set to store unique edge colors | |
for edge in G.edges(data=True): | |
x0, y0 = pos[edge[0]] | |
x1, y1 = pos[edge[1]] | |
color = edge[2]["color"] | |
trace = go.Scatter( | |
x=[x0, x1], | |
y=[y0, y1], | |
mode="lines", | |
line=dict(width=2, color=color), | |
hoverinfo="none", | |
) | |
edge_traces.append(trace) | |
edge_legend.add(color) # Add edge color to the set | |
# Create layout | |
layout = go.Layout( | |
showlegend=False, | |
hovermode="closest", | |
margin=dict(b=20, l=5, r=5, t=40), | |
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), | |
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), | |
) | |
# Create figure | |
fig = go.Figure(data=[edge_trace, *edge_traces, node_trace], layout=layout) | |
# Create custom legend for edge colors | |
custom_legend = [] | |
legend_names = ["Neutral", "Negative", "Positive"] | |
legend_colors = ["dimgrey", "mediumvioletred", "green"] | |
for name, color in zip(legend_names, legend_colors): | |
custom_legend.append( | |
go.Scatter( | |
x=[None], | |
y=[None], | |
mode="markers", | |
marker=dict(color=color), | |
name=f"{name}", | |
showlegend=True, | |
hoverinfo="none", | |
) | |
) | |
if is_mini == False: | |
# Create layout for custom legend figure | |
legend_layout = go.Layout( | |
title="Plant Compatibility Network Graph", | |
showlegend=True, | |
margin=dict(b=1, t=100), | |
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), | |
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), | |
height=120, | |
legend=dict( | |
title="Edge Colors", | |
orientation="h", | |
x=-1, | |
y=1.1, | |
bgcolor="rgba(0,0,0,0)", | |
), | |
) | |
else: | |
fig.update_layout( | |
autosize=False, | |
width=300, | |
height=300, | |
) | |
if is_mini == False: | |
# Create figure for custom legend | |
legend_fig = go.Figure(data=custom_legend, layout=legend_layout) | |
# Render the custom legend using Plotly in Streamlit | |
st.plotly_chart(legend_fig, use_container_width=True) | |
# Render the graph using Plotly in Streamlit | |
st.plotly_chart(fig) | |
# this is not used as it needs to be refactored and is not working as intended | |
def show_plant_tips(): | |
tips_string = st.session_state.plant_care_tips | |
tips_list = tips_string.split("\n") | |
num_tips = len(tips_list) | |
st.markdown( | |
"## Plant Care Tips for your plants: " | |
+ str(st.session_state.input_plants_raw) | |
+ "\n\n" | |
+ st.session_state.plant_care_tips | |
) | |
def visualize_groupings_sankey(): | |
groupings = st.session_state.grouping | |
compatibility_matrix = st.session_state.extracted_mat | |
plant_list = st.session_state.input_plants_raw | |
for i, bed_species in enumerate(groupings): | |
st.subheader(f"Plant Bed {i + 1}") | |
# Create the nodes | |
nodes = [] | |
for species in bed_species: | |
nodes.append(species) | |
# Create the links | |
links = [] | |
for j, species1 in enumerate(bed_species): | |
for k, species2 in enumerate(bed_species): | |
if j < k: | |
species1_index = plant_list.index(species1) | |
species2_index = plant_list.index(species2) | |
compatibility = compatibility_matrix[species1_index][species2_index] | |
if compatibility == 1: | |
color = "green" | |
elif compatibility == -1: | |
color = "pink" | |
else: | |
color = "grey" | |
links.append( | |
dict(source=j, target=k, value=compatibility, color=color) | |
) | |
# Create the Sankey diagram | |
fig = go.Figure( | |
data=[ | |
go.Sankey( | |
node=dict(label=nodes, color="lightblue"), | |
link=dict( | |
source=[link["source"] for link in links], | |
target=[link["target"] for link in links], | |
value=[link["value"] for link in links], | |
color=[link["color"] for link in links], | |
), | |
) | |
] | |
) | |
# Set the layout properties | |
layout = go.Layout( | |
plot_bgcolor="black", paper_bgcolor="black", title_font=dict(color="white") | |
) | |
# Set the figure layout | |
fig.update_layout(layout) | |
# Render the Sankey diagram in Streamlit | |
st.plotly_chart(fig) | |
def visualize_groupings(): | |
groupings = st.session_state.grouping | |
compatibility_matrix = st.session_state.extracted_mat | |
plant_list = st.session_state.input_plants_raw | |
def generate_grouping_matrices(groupings, compatibility_matrix, plant_list): | |
grouping_matrices = [] | |
for grouping in groupings: | |
indices = [plant_list.index(plant) for plant in grouping] | |
submatrix = [[compatibility_matrix[i][j] for j in indices] for i in indices] | |
grouping_matrices.append(submatrix) | |
return grouping_matrices | |
grouping_matrices = generate_grouping_matrices( | |
groupings, compatibility_matrix, plant_list | |
) | |
for i, submatrix in enumerate(grouping_matrices): | |
col1, col2 = st.columns([1, 3]) | |
with col1: | |
st.write(f"Plant Bed {i + 1}") | |
st.write("Plant List") | |
st.write(groupings[i]) | |
with col2: | |
plot_compatibility_with_agraph( | |
groupings[i], st.session_state.full_mat, is_mini=True | |
) | |
def plot_compatibility_with_agraph(plants, compatibility_matrix, is_mini=False): | |
# Create nodes and edges for the graph | |
nodes = [] | |
edges = [] | |
# Function to get the image URL for a plant | |
def get_image_url(plant_name): | |
index = st.session_state.plant_list.index(plant_name) | |
image_path = f"https://github.com/4dh/GRDN/blob/dev/src/assets/plant_images/plant_{index}.png?raw=true" | |
print(image_path) | |
return image_path | |
size_n = 32 if not is_mini else 24 | |
# Create nodes with images | |
for plant in plants: | |
nodes.append( | |
Node( | |
id=plant, | |
label=plant, | |
# make text bigger | |
font={"size": 20}, | |
# spread nodes out | |
scaling={"label": {"enabled": True}}, | |
size=size_n, | |
shape="circularImage", | |
image=get_image_url(plant), | |
) | |
) | |
# Create edges based on compatibility | |
# for i in range(len(st.session_state.plant_list)): | |
# loop through all plants in raw long list and find the index of the plant in the plant list to get relevant metadata. skip if we are looking at the same plant | |
for i, i_p in enumerate(st.session_state.plant_list): | |
for j, j_p in enumerate(st.session_state.plant_list): | |
if i != j: | |
# check if plants[i] and plants[j] are in input_plants_raw | |
# print(st.session_state.input_plants_raw) | |
if is_mini == False: | |
length_e = 300 | |
else: | |
length_e = 150 | |
if ( | |
i_p in st.session_state.input_plants_raw | |
and j_p in st.session_state.input_plants_raw | |
): | |
# use the compatibility matrix and the plant to index mapping to determine the color of the edge | |
if compatibility_matrix[i][j] == 1: | |
color = "green" | |
edges.append( | |
Edge( | |
source=i_p, | |
target=j_p, | |
width=3.5, | |
type="CURVE_SMOOTH", | |
color=color, | |
length=length_e, | |
) | |
) | |
print(i, j, i_p, j_p, color) | |
elif compatibility_matrix[i][j] == -1: | |
color = "mediumvioletred" | |
edges.append( | |
Edge( | |
source=i_p, | |
target=j_p, | |
width=3.5, | |
type="CURVE_SMOOTH", | |
color=color, | |
length=length_e, | |
) | |
) | |
print(i, j, i_p, j_p, color) | |
else: | |
color = "dimgrey" | |
edges.append( | |
Edge( | |
source=i_p, | |
target=j_p, | |
width=0.2, | |
type="CURVE_SMOOTH", | |
color=color, | |
length=length_e, | |
) | |
) | |
print(i, j, i_p, j_p, color) | |
# Configuration for the graph | |
config = Config( | |
width=650 if not is_mini else 400, | |
height=400 if not is_mini else 400, | |
directed=False, | |
physics=True, | |
hierarchical=False, | |
nodeHighlightBehavior=True, | |
highlightColor="#F7A7A6", | |
collapsible=True, | |
maxZoom=5, | |
minZoom=0.2, | |
initialZoom=4, | |
) | |
# Handling for non-mini version | |
if not is_mini: | |
# Create custom legend for edge colors at the top of the page | |
custom_legend = [] | |
legend_names = ["Neutral", "Negative", "Positive"] | |
legend_colors = ["dimgrey", "mediumvioletred", "green"] | |
for name, color in zip(legend_names, legend_colors): | |
custom_legend.append( | |
go.Scatter( | |
x=[None], | |
y=[None], | |
mode="markers", | |
marker=dict(color=color), | |
name=name, | |
showlegend=True, | |
hoverinfo="none", | |
) | |
) | |
# Create layout for custom legend figure | |
legend_layout = go.Layout( | |
title="Plant Compatibility Network Graph", | |
showlegend=True, | |
margin=dict(b=1, t=100), | |
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), | |
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), | |
height=120, | |
legend=dict( | |
title="Edge Colors", | |
orientation="h", | |
# make it appear above the graph | |
x=-1, | |
y=1.1, | |
bgcolor="rgba(0,0,0,0)", | |
), | |
) | |
# Create figure for custom legend | |
legend_fig = go.Figure(data=custom_legend, layout=legend_layout) | |
# Render the custom legend using Plotly in Streamlit | |
st.plotly_chart(legend_fig, use_container_width=True) | |
# Render the graph using streamlit-agraph | |
return_value = agraph(nodes=nodes, edges=edges, config=config) | |