File size: 8,284 Bytes
d796c69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import streamlit as st
import pandas as pd
from io import StringIO
import pyperclip
import openai
# Initialize session state variables
if 'history' not in st.session_state:
st.session_state.history = []
if 'prompt' not in st.session_state:
st.session_state.prompt = ""
if 'output' not in st.session_state:
st.session_state.output = ""
if 'title' not in st.session_state:
st.session_state.title = ""
# Custom CSS
st.markdown("""
<style>
.stats-text {
font-size: 0.8rem;
color: #666;
}
</style>
""", unsafe_allow_html=True)
def count_text_stats(text):
words = len(text.split())
chars = len(text)
return words, chars
def separate_prompt_output(text):
if not text:
return "", "", ""
if st.session_state.get('openai_api_key'):
prompt, output = analyze_with_llm(text)
if prompt is not None and output is not None:
suggested_title = generate_title_with_llm(prompt, output)
return suggested_title, prompt, output
parts = text.split('\n\n', 1)
if len(parts) == 2:
return "Untitled Conversation", parts[0].strip(), parts[1].strip()
return "Untitled Conversation", text.strip(), ""
def generate_title_with_llm(prompt, output):
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "system",
"content": "Generate a short, concise title (max 6 words) that captures the main topic of this conversation."
},
{
"role": "user",
"content": f"Prompt: {prompt}\nOutput: {output}"
}
],
max_tokens=20,
temperature=0.7
)
return response.choices[0].message['content'].strip()
except Exception as e:
return "Untitled Conversation"
def process_column(column):
processed_data = []
for item in column:
title, prompt, output = separate_prompt_output(str(item))
processed_data.append({"Title": title, "Prompt": prompt, "Output": output})
return pd.DataFrame(processed_data)
# Main interface
st.title("βοΈ Prompt Output Separator")
st.markdown("Utility to assist with separating prompts and outputs when they are recorded in a unified block of text. For cost-optimisation, uses GPT 3.5.")
# Tabs with icons
tabs = st.tabs(["π Paste Text", "π File Processing", "π History"])
# Paste Text Tab
with tabs[0]:
st.subheader("Paste Prompt and Output")
# Settings
with st.expander("βοΈ Settings", expanded=False):
auto_copy = st.checkbox("Automatically copy prompt to clipboard", value=False)
st.text_input("OpenAI API Key (optional)", type="password", key="openai_api_key")
# Input area with placeholder
input_container = st.container()
with input_container:
input_text = st.text_area(
"Paste your conversation here...",
height=200,
placeholder="Paste your conversation here. The tool will automatically separate the prompt from the output.",
help="Enter the text you want to separate into prompt and output."
)
# Action buttons
col1, col2 = st.columns(2)
with col1:
if st.button("π Separate Now", use_container_width=True):
if input_text:
with st.spinner("Processing..."):
st.session_state.history.append(input_text)
title, prompt, output = separate_prompt_output(input_text)
st.session_state.title = title
st.session_state.prompt = prompt
st.session_state.output = output
if auto_copy:
pyperclip.copy(prompt)
else:
st.error("Please enter some text")
with col2:
if st.button("ποΈ Clear All", use_container_width=True):
st.session_state.title = ""
st.session_state.prompt = ""
st.session_state.output = ""
input_text = ""
# Suggested Title Section
st.markdown("### π Suggested Title")
title_area = st.text_area(
"",
value=st.session_state.get('title', ""),
height=50,
key="title_area",
help="A suggested title based on the content"
)
# Prompt Section
st.markdown("### π Prompt")
prompt_area = st.text_area(
"",
value=st.session_state.get('prompt', ""),
height=200,
key="prompt_area",
help="The extracted prompt will appear here"
)
# Display prompt stats
prompt_words, prompt_chars = count_text_stats(st.session_state.get('prompt', ""))
st.markdown(f"<p class='stats-text'>Words: {prompt_words} | Characters: {prompt_chars}</p>", unsafe_allow_html=True)
if st.button("π Copy Prompt", use_container_width=True):
pyperclip.copy(st.session_state.get('prompt', ""))
st.success("Copied prompt to clipboard!")
# Output Section
st.markdown("### π€ Output")
output_area = st.text_area(
"",
value=st.session_state.get('output', ""),
height=200,
key="output_area",
help="The extracted output will appear here"
)
# Display output stats
output_words, output_chars = count_text_stats(st.session_state.get('output', ""))
st.markdown(f"<p class='stats-text'>Words: {output_words} | Characters: {output_chars}</p>", unsafe_allow_html=True)
if st.button("π Copy Output", use_container_width=True):
pyperclip.copy(st.session_state.get('output', ""))
st.success("Copied output to clipboard!")
# File Processing Tab
with tabs[1]:
st.subheader("File Processing")
uploaded_files = st.file_uploader(
"Upload files",
type=["txt", "md", "csv"],
accept_multiple_files=True,
help="Upload text files to process multiple conversations at once"
)
if uploaded_files:
for file in uploaded_files:
with st.expander(f"π {file.name}", expanded=True):
file_content = file.read().decode("utf-8")
if file.name.endswith(".csv"):
df = pd.read_csv(StringIO(file_content))
for col in df.columns:
processed_df = process_column(df[col])
st.write(f"Processed column: {col}")
st.dataframe(
processed_df,
use_container_width=True,
hide_index=True
)
else:
title, prompt, output = separate_prompt_output(file_content)
st.json({
"Title": title,
"Prompt": prompt,
"Output": output
})
# History Tab
with tabs[2]:
st.subheader("Processing History")
if st.session_state.history:
if st.button("ποΈ Clear History", type="secondary"):
st.session_state.history = []
st.experimental_rerun()
for idx, item in enumerate(reversed(st.session_state.history)):
with st.expander(f"Entry {len(st.session_state.history) - idx}", expanded=False):
st.text_area(
"Content",
value=item,
height=150,
key=f"history_{idx}",
disabled=True
)
else:
st.info("π‘ No processing history available yet. Process some text to see it here.")
# Footer
st.markdown("---")
st.markdown(
"""
<div style='text-align: center'>
<p>Created by <a href="https://github.com/danielrosehill/Prompt-And-Output-Separator">Daniel Rosehill</a> and Claude Sonnet 3.5</p>
<p><a href="https://github.com/danielrosehill/Prompt-And-Output-Separator" target="_blank">
<img src="https://img.shields.io/github/stars/danielrosehill/Prompt-And-Output-Separator?style=social" alt="GitHub stars">
</a></p>
</div>
""",
unsafe_allow_html=True
) |