danielrosehill's picture
updated
d796c69
raw
history blame
11 kB
import streamlit as st
import pandas as pd
import re
import time
import os
from io import StringIO
import pyperclip
from openai import OpenAI
import json
# Page Configuration
st.set_page_config(
page_title="Prompt Output Separator",
page_icon="βœ‚οΈ",
layout="wide",
initial_sidebar_state="expanded"
)
# Initialize session state variables
if 'openai_api_key' not in st.session_state:
st.session_state.openai_api_key = None
if 'history' not in st.session_state:
st.session_state.history = []
if 'prompt' not in st.session_state:
st.session_state.prompt = ""
if 'output' not in st.session_state:
st.session_state.output = ""
if 'title' not in st.session_state:
st.session_state.title = ""
if 'mode' not in st.session_state:
st.session_state.mode = 'light'
def count_text_stats(text):
words = len(text.split())
chars = len(text)
return words, chars
def analyze_with_llm(text):
if not st.session_state.openai_api_key:
st.error("Please provide an OpenAI API key in the sidebar")
return None, None
try:
client = OpenAI(api_key=st.session_state.openai_api_key)
response = client.chat.completions.create(
model="gpt-3.5-turbo-1106",
messages=[
{
"role": "system",
"content": """You are a text analysis expert. Your task is to separate a conversation into the prompt/question and the response/answer.
Return ONLY a JSON object with three fields:
- title: a short, descriptive title for the conversation (max 6 words)
- prompt: the user's question or prompt
- output: the response or answer
If you cannot clearly identify any part, set it to null."""
},
{
"role": "user",
"content": f"Please analyze this text and separate it into title, prompt and output: {text}"
}
],
temperature=0,
response_format={ "type": "json_object" }
)
result = response.choices[0].message.content
parsed = json.loads(result)
return parsed.get("title"), parsed.get("prompt"), parsed.get("output")
except Exception as e:
st.error(f"Error analyzing text: {str(e)}")
return None, None, None
def separate_prompt_output(text):
if not text:
return "", "", ""
if st.session_state.openai_api_key:
title, prompt, output = analyze_with_llm(text)
if all(v is not None for v in [title, prompt, output]):
return title, prompt, output
parts = text.split('\n\n', 1)
if len(parts) == 2:
return "Untitled Conversation", parts[0].strip(), parts[1].strip()
return "Untitled Conversation", text.strip(), ""
def process_column(column):
processed_data = []
for item in column:
title, prompt, output = separate_prompt_output(str(item))
processed_data.append({"Title": title, "Prompt": prompt, "Output": output})
return pd.DataFrame(processed_data)
# Sidebar configuration
with st.sidebar:
st.image("https://img.icons8.com/color/96/000000/chat.png", width=50)
st.markdown("## πŸ› οΈ Configuration")
api_key = st.text_input("Enter OpenAI API Key", type="password")
if api_key:
st.session_state.openai_api_key = api_key
# Dark mode toggle
st.markdown("---")
st.markdown("## 🎨 Appearance")
dark_mode = st.toggle("Dark Mode", value=st.session_state.mode == 'dark')
st.session_state.mode = 'dark' if dark_mode else 'light'
# Settings section
st.markdown("---")
st.markdown("## βš™οΈ Settings")
auto_copy = st.checkbox("Auto-copy results to clipboard", value=False)
if st.session_state.openai_api_key:
st.success("βœ“ API Key configured")
else:
st.warning("⚠ No API Key provided - using basic separation")
# Main interface
st.title("βœ‚οΈ Prompt Output Separator")
st.markdown("Utility to assist with separating prompts and outputs when they are recorded in a unified block of text. For cost-optimisation, uses GPT 3.5.")
# Tabs with icons
tabs = st.tabs(["πŸ“ Paste Text", "πŸ“ File Processing", "πŸ“Š History"])
# Paste Text Tab
with tabs[0]:
st.subheader("Paste Prompt and Output")
# Input area with placeholder
input_container = st.container()
with input_container:
input_text = st.text_area(
"Paste your conversation here...",
height=200,
placeholder="Paste your conversation here. The tool will automatically separate the prompt from the output.",
help="Enter the text you want to separate into prompt and output."
)
# Process button
if st.button("πŸ”„ Process", use_container_width=True) and input_text:
with st.spinner("Processing..."):
title, prompt, output = separate_prompt_output(input_text)
st.session_state.title = title
st.session_state.prompt = prompt
st.session_state.output = output
st.session_state.history.append(input_text)
# Suggested Title Section
st.markdown("### πŸ“Œ Suggested Title")
title_area = st.text_area(
"",
value=st.session_state.get('title', ""),
height=70,
key="title_area",
help="AI-generated title based on the conversation content"
)
# Prompt Section
st.markdown("### πŸ“ Prompt")
prompt_area = st.text_area(
"",
value=st.session_state.get('prompt', ""),
height=200,
key="prompt_area",
help="The extracted prompt will appear here"
)
# Display prompt stats
prompt_words, prompt_chars = count_text_stats(st.session_state.get('prompt', ""))
st.markdown(f"<p class='stats-text'>Words: {prompt_words} | Characters: {prompt_chars}</p>", unsafe_allow_html=True)
if st.button("πŸ“‹ Copy Prompt", use_container_width=True):
pyperclip.copy(st.session_state.get('prompt', ""))
st.success("Copied prompt to clipboard!")
# Output Section
st.markdown("### πŸ€– Output")
output_area = st.text_area(
"",
value=st.session_state.get('output', ""),
height=200,
key="output_area",
help="The extracted output will appear here"
)
# Display output stats
output_words, output_chars = count_text_stats(st.session_state.get('output', ""))
st.markdown(f"<p class='stats-text'>Words: {output_words} | Characters: {output_chars}</p>", unsafe_allow_html=True)
if st.button("πŸ“‹ Copy Output", use_container_width=True):
pyperclip.copy(st.session_state.get('output', ""))
st.success("Copied output to clipboard!")
# File Processing Tab
with tabs[1]:
st.subheader("File Processing")
uploaded_files = st.file_uploader(
"Upload files",
type=["txt", "md", "csv"],
accept_multiple_files=True,
help="Upload text files to process multiple conversations at once"
)
if uploaded_files:
for file in uploaded_files:
with st.expander(f"πŸ“„ {file.name}", expanded=True):
file_content = file.read().decode("utf-8")
if file.name.endswith(".csv"):
df = pd.read_csv(StringIO(file_content))
for col in df.columns:
processed_df = process_column(df[col])
st.write(f"Processed column: {col}")
st.dataframe(
processed_df,
use_container_width=True,
hide_index=True
)
else:
title, prompt, output = separate_prompt_output(file_content)
st.json({
"Title": title,
"Prompt": prompt,
"Output": output
})
# History Tab
with tabs[2]:
st.subheader("Processing History")
if st.session_state.history:
if st.button("πŸ—‘οΈ Clear History", type="secondary"):
st.session_state.history = []
st.experimental_rerun()
for idx, item in enumerate(reversed(st.session_state.history)):
with st.expander(f"Entry {len(st.session_state.history) - idx}", expanded=False):
st.text_area(
"Content",
value=item,
height=150,
key=f"history_{idx}",
disabled=True
)
else:
st.info("πŸ’‘ No processing history available yet. Process some text to see it here.")
# Footer
st.markdown("---")
st.markdown(
"""
<div style='text-align: center'>
<p>Created by <a href="https://github.com/danielrosehill/Prompt-And-Output-Separator">Daniel Rosehill</a></p>
</div>
""",
unsafe_allow_html=True
)
# Apply theme
if st.session_state.mode == 'dark':
st.markdown("""
<style>
body {
color: #fff;
background-color: #0e1117;
}
.stTextInput > div > div > input, .stTextArea > div > div > textarea {
color: #fff;
background-color: #262730;
border-radius: 8px;
border: 1px solid #464646;
padding: 15px;
font-family: 'Courier New', monospace;
}
.stButton > button {
color: #fff;
background-color: #4c4cff;
border-radius: 8px;
padding: 10px 20px;
transition: all 0.3s ease;
border: none;
width: 100%;
}
.stButton > button:hover {
background-color: #6b6bff;
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(76, 76, 255, 0.3);
}
.stMarkdown {
color: #fff;
}
.stats-text {
color: #999;
font-size: 0.8em;
margin-top: 5px;
}
</style>
""", unsafe_allow_html=True)
else:
st.markdown("""
<style>
body {
color: #333;
background-color: #fff;
}
.stTextInput > div > div > input, .stTextArea > div > div > textarea {
color: #333;
background-color: #f8f9fa;
border-radius: 8px;
border: 1px solid #e0e0e0;
padding: 15px;
font-family: 'Courier New', monospace;
}
.stButton > button {
color: #fff;
background-color: #4c4cff;
border-radius: 8px;
padding: 10px 20px;
transition: all 0.3s ease;
border: none;
width: 100%;
}
.stButton > button:hover {
background-color: #6b6bff;
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(76, 76, 255, 0.3);
}
.stats-text {
color: #666;
font-size: 0.8em;
margin-top: 5px;
}
</style>
""", unsafe_allow_html=True)