guy-dar's picture
fix mentioning param twice
cea7b8e
import re
import numpy as np
from copy import deepcopy
import matplotlib.pyplot as plt
from torch import nn
import torch
import torch.nn.functional as F
from transformers import AutoConfig, AutoTokenizer, AutoModel
import gc
import numpy as np
from copy import deepcopy
import matplotlib.pyplot as plt
from torch import nn
import torch
import torch.nn.functional as F
import transformers
from transformers import AutoConfig, AutoTokenizer, AutoModel
from transformers import AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, MaxLengthCriteria, StoppingCriteriaList
from transformers import DataCollatorWithPadding
from transformers import LogitsProcessor, LogitsProcessorList, LogitsWarper
from torch.utils.data import DataLoader
from datasets import load_dataset
from tqdm.auto import tqdm
from dataclasses import dataclass
from argparse import ArgumentParser
@dataclass
class ModelParameters:
K_heads: torch.Tensor
num_layers: int
d_int: int
num_heads: int
hidden_dim: int
head_size: int
V_heads: torch.Tensor = None
W_Q_heads: torch.Tensor = None
W_K_heads: torch.Tensor = None
W_V_heads: torch.Tensor = None
W_O_heads: torch.Tensor = None
emb: torch.Tensor = None
def extract_gpt_parameters(model, full=False):
num_layers = model.config.n_layer
num_heads = model.config.n_head
hidden_dim = model.config.n_embd
head_size = hidden_dim // num_heads
K = torch.cat([model.get_parameter(f"transformer.h.{j}.mlp.c_fc.weight").T
for j in range(num_layers)]).detach()
K_heads = K.reshape(num_layers, -1, hidden_dim)
d_int = K_heads.shape[1]
model_params = ModelParameters(K_heads=K_heads, num_layers=num_layers, d_int=d_int,
hidden_dim=hidden_dim, head_size=head_size,
num_heads=num_heads)
if full:
emb = model.get_output_embeddings().weight.data.T
V = torch.cat([model.get_parameter(f"transformer.h.{j}.mlp.c_proj.weight")
for j in range(num_layers)]).detach()
W_Q, W_K, W_V = torch.cat([model.get_parameter(f"transformer.h.{j}.attn.c_attn.weight")
for j in range(num_layers)]).detach().chunk(3, dim=-1)
W_O = torch.cat([model.get_parameter(f"transformer.h.{j}.attn.c_proj.weight")
for j in range(num_layers)]).detach()
model_params.V_heads = V.reshape(num_layers, -1, hidden_dim)
model_params.W_V_heads = W_V.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
model_params.W_O_heads = W_O.reshape(num_layers, num_heads, head_size, hidden_dim)
model_params.W_Q_heads = W_Q.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
model_params.W_K_heads = W_K.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
model_params.emb = emb
return model_params
def extract_gpt_j_parameters(model, full=False):
num_layers = model.config.n_layer
num_heads = model.config.n_head
hidden_dim = model.config.n_embd
head_size = hidden_dim // num_heads
K = torch.cat([model.get_parameter(f"transformer.h.{j}.mlp.fc_in.weight")
for j in range(num_layers)]).detach()
K_heads = K.reshape(num_layers, -1, hidden_dim)
d_int = K_heads.shape[1]
model_params = ModelParameters(K_heads=K_heads, num_layers=num_layers, d_int=d_int,
hidden_dim=hidden_dim, head_size=head_size,
num_heads=num_heads)
if full:
raise NotImplementedError
emb = model.get_output_embeddings().weight.data.T
V = torch.cat([model.get_parameter(f"transformer.h.{j}.mlp.c_out.weight").T
for j in range(num_layers)]).detach()
# W_Q, W_K, W_V = torch.cat([model.get_parameter(f"transformer.h.{j}.attn.c_attn.weight")
# for j in range(num_layers)]).detach().chunk(3, dim=-1)
# W_O = torch.cat([model.get_parameter(f"transformer.h.{j}.attn.c_proj.weight")
# for j in range(num_layers)]).detach()
model_params.V_heads = V.reshape(num_layers, -1, hidden_dim)
# model_params.W_V_heads = W_V.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
# model_params.W_O_heads = W_O.reshape(num_layers, num_heads, head_size, hidden_dim)
# model_params.W_Q_heads = W_Q.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
# model_params.W_K_heads = W_K.reshape(num_layers, hidden_dim, num_heads, head_size).permute(0, 2, 1, 3)
model_params.emb = emb
return model_params
def encode(token, tokenizer):
assert (type(token) == str)
encoded = tokenizer.encode(token)
assert (len(encoded) == 1)
return encoded[0]
def read_and_go(path):
with open(path, 'r') as f:
return f.read()
def extend_model_and_tokenizer(model, model_params, tokenizer, min_layer=0,
max_layer=None):
if max_layer is None:
max_layer = len(model_params.K_heads)-1
relevant_neurons = model_params.K_heads[min_layer:max_layer+1]
num_regular_tokens = len(tokenizer)
new_tokens = [f" <param_{layer}_{dim}>" for layer in range(min_layer, max_layer+1)
for dim in range(relevant_neurons.shape[1])]
tokenizer_extended = deepcopy(tokenizer)
model_extended = deepcopy(model)
tokenizer_extended.add_tokens(new_tokens)
model_extended.resize_token_embeddings(len(tokenizer_extended))
model_extended.transformer.wte.weight.data[-len(new_tokens):] = relevant_neurons.flatten(0, -2)
return model_extended, tokenizer_extended
# logit processors
class NeuronTokenBan(LogitsWarper):
def __init__(self, num_non_neuron_tokens, ban_penalty=-np.inf):
self.ban_penalty = ban_penalty
self.num_non_neuron_tokens = num_non_neuron_tokens
def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.FloatTensor:
scores[:, self.num_non_neuron_tokens:] = self.ban_penalty
return scores
class ParamListStructureEnforcer(LogitsProcessor):
def __init__(self, tokenizer, num_regular_tokens):
self.tokenizer = tokenizer
self.num_regular_tokens = num_regular_tokens
def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.FloatTensor:
last_input_id = input_ids[0, -1]
tokenizer = self.tokenizer
num_regular_tokens = self.num_regular_tokens
comma_id = encode(',', tokenizer)
eos_score, comma_score = deepcopy(scores[:, tokenizer.eos_token_id]), deepcopy(scores[:, comma_id])
if last_input_id >= num_regular_tokens:
scores[:] = -np.inf
scores[:, comma_id] = comma_score
else:
scores[:, :num_regular_tokens] = -np.inf
scores[:, tokenizer.eos_token_id] = eos_score
return scores
# speaking probe
def _preprocess_prompt(model_params, prompt):
K_heads = model_params.K_heads
prompt = re.sub(r'([^ ]|\A)(<neuron\d*>|<param_\d+_\d+>)', lambda m: f'{m.group(1)} {m.group(2)}', prompt)
param_neuron_idxs = set([(int(a), int(b)) for a, b in re.findall(r' <param_(\d+)_(\d+)>', prompt)])
param_neuron_tokens = [f' <param_{a}_{b}>' for a, b in param_neuron_idxs]
param_neurons = [deepcopy(K_heads[a, b]) for a, b in param_neuron_idxs]
return prompt, param_neuron_tokens, param_neurons
def speaking_probe(model, model_params, tokenizer, prompt, *neurons,
num_generations=1, layer_range=None, bad_words_ids=[], output_neurons=False,
return_outputs=False, logits_processor=LogitsProcessorList([]), **kwargs):
num_non_neuron_tokens = len(tokenizer)
tokenizer_with_neurons = deepcopy(tokenizer)
# adding neurons to the tokenizer
neuron_tokens = [f" <neuron{i+1 if i > 0 else ''}>" for i in range(len(neurons))]
prompt, param_neuron_tokens, param_neurons = _preprocess_prompt(model_params, prompt)
neuron_tokens.extend(param_neuron_tokens)
neurons = neurons + tuple(param_neurons)
has_extra_neurons = len(neurons) > 0
if has_extra_neurons:
tokenizer_with_neurons.add_tokens(neuron_tokens)
model.resize_token_embeddings(len(tokenizer_with_neurons))
model.transformer.wte.weight.data[-len(neurons):] = torch.stack(neurons, dim=0)
logits_processor = deepcopy(logits_processor)
if not output_neurons:
logits_processor.append(NeuronTokenBan(num_non_neuron_tokens))
if layer_range is not None:
num_layers = model_params.num_layers
min_layer, max_layer = layer_range
bad_words_ids = deepcopy(bad_words_ids)
bad_words_ids.extend([[encode(f" <param_{i}_{j}>", tokenizer)]
for j in range(model_params.d_int)
for i in [*range(min_layer), *range(max_layer+1, num_layers)]])
if len(bad_words_ids) == 0:
bad_words_ids = None
input_ids = tokenizer_with_neurons.encode(prompt, return_tensors='pt').to(model.device)
input_ids = torch.cat([deepcopy(input_ids) for _ in range(num_generations)], dim=0)
outputs = model.generate(input_ids, pad_token_id=model.config.eos_token_id,
logits_processor=logits_processor,
bad_words_ids=bad_words_ids,
return_dict_in_generate=True,
**kwargs)
decoded = tokenizer_with_neurons.batch_decode(outputs.sequences, skip_special_tokens=True)
# TODO: add `finally` statement
if has_extra_neurons:
model.resize_token_embeddings(num_non_neuron_tokens)
model.transformer.wte.weight.data = model.transformer.wte.weight.data[:num_non_neuron_tokens]
if return_outputs:
return decoded, outputs
else:
return decoded
# main
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('-p', '--prompt', type=str, default=None)
parser.add_argument('--model', type=str, default='gpt2-large')
parser.add_argument('--neuron', type=str, default=None)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--prompt_file', type=str, default=None)
parser.add_argument('--no_sample', action='store_true')
parser.add_argument('--num_beams', type=int, default=3)
parser.add_argument('--num_generations', type=int, default=1)
parser.add_argument('--min_length', type=int, default=20)
parser.add_argument('--top_p', type=float, default=None)
parser.add_argument('--top_k', type=int, default=None)
parser.add_argument('--max_length', type=int, default=100)
parser.add_argument('--max_new_tokens', type=int, default=None)
parser.add_argument('--repetition_penalty', type=float, default=2.)
parser.add_argument('--temperature', type=float, default=1.)
args = parser.parse_args()
# TODO: first make them mutually exclusive
if args.max_new_tokens is not None:
args.max_length = None
print("loading model and tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(args.model)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(args.model)
model_params = extract_gpt_parameters(model)
prompt = args.prompt or read_and_go(args.prompt_file)
device = args.device
model = model.to(device)
i1, i2 = map(lambda x: int(x.strip()), args.neuron.split(','))
neuron = model_params.K_heads[i1, i2]
neurons = [neuron]
print(prompt)
decoded = speaking_probe(model, model_params, tokenizer, prompt, *neurons,
num_generations=args.num_generations,
repetition_penalty=args.repetition_penalty,
num_beams=args.num_beams, top_p=args.top_p, top_k=args.top_k,
temperature=args.temperature,
min_length=args.min_length, do_sample=not args.no_sample,
max_length=args.max_length, max_new_tokens=args.max_new_tokens)
for i in range(len(decoded)):
print("\n\ngenerate:", decoded[i])