File size: 5,596 Bytes
db28818
585854e
42eb874
83a0630
585854e
 
 
4a78e11
 
 
585854e
44741f9
 
 
 
585854e
 
 
44741f9
 
 
 
 
 
585854e
 
 
44741f9
 
 
 
 
 
585854e
 
44741f9
 
 
 
 
 
 
 
585854e
44741f9
585854e
 
 
 
 
 
 
 
 
 
 
 
 
 
e8897e7
585854e
 
 
 
 
 
 
 
 
 
 
4a78e11
 
 
 
 
 
e8897e7
 
 
 
 
 
 
 
 
 
 
585854e
 
 
 
e8897e7
 
585854e
e8897e7
585854e
 
 
 
 
 
 
e8897e7
585854e
 
 
e8897e7
 
 
585854e
 
 
 
 
 
 
 
e8897e7
 
585854e
 
 
 
 
 
 
 
 
 
 
e8897e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import streamlit as st
from transformers import AutoModel
from PIL import Image
import torch
import numpy as np
import urllib.request

memory = {}

@st.cache_resource
def load_model():
    model = AutoModel.from_pretrained("ragavsachdeva/magi", trust_remote_code=True)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)
    return model

@st.cache_data
def read_image_as_np_array(image_path):
    if "http" in image_path:
        image = Image.open(urllib.request.urlopen(image_path)).convert("L").convert("RGB")
    else:
        image = Image.open(image_path).convert("L").convert("RGB")
    image = np.array(image)
    return image

@st.cache_data
def predict_detections_and_associations(
        image_path,
        character_detection_threshold,
        panel_detection_threshold,
        text_detection_threshold,
        character_character_matching_threshold,
        text_character_matching_threshold,
):
    image = read_image_as_np_array(image_path)
    with torch.no_grad():
        result = model.predict_detections_and_associations(
            [image],
            character_detection_threshold=character_detection_threshold,
            panel_detection_threshold=panel_detection_threshold,
            text_detection_threshold=text_detection_threshold,
            character_character_matching_threshold=character_character_matching_threshold,
            text_character_matching_threshold=text_character_matching_threshold,
            )[0]
    return result

@st.cache_data
def predict_ocr(
    image_path,
    character_detection_threshold,
    panel_detection_threshold,
    text_detection_threshold,
    character_character_matching_threshold,
    text_character_matching_threshold,
):
    if not generate_transcript:
        return
    image = read_image_as_np_array(image_path)
    result = predict_detections_and_associations(
        path_to_image,
        character_detection_threshold,
        panel_detection_threshold,
        text_detection_threshold,
        character_character_matching_threshold,
        text_character_matching_threshold,
    )
    text_bboxes_for_all_images = [result["texts"]]
    with torch.no_grad():
        ocr_results = model.predict_ocr([image], text_bboxes_for_all_images)
    return ocr_results

model = load_model()

# Add a button to clear memory
if st.button("Clear Memory"):
    memory.clear()

# Streamlit UI elements
st.markdown("""    
<style> .title-container { background-color: #0d1117; padding: 20px; border-radius: 10px; margin: 20px; } 
.title { font-size: 2em; text-align: center; color: #fff; font-family: 'Comic Sans MS', cursive; text-transform: uppercase; 
letter-spacing: 0.1em; padding: 0.5em 0 0.2em; background: 0 0; } .title span { background: -webkit-linear-gradient(45deg, 
#6495ed, #4169e1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } .subheading { font-size: 1.5em; 
text-align: center; color: #ddd; font-family: 'Comic Sans MS', cursive; } .affil, .authors { font-size: 1em; text-align: center; 
color: #ddd; font-family: 'Comic Sans MS', cursive; } .authors { padding-top: 1em; } </style> 
<div class='title-container'> <div class='title'> The <span>Ma</span>n<span>g</span>a Wh<span>i</span>sperer </div> 
<div class='subheading'> Automatically Generating Transcriptions for Comics </div> <div class='authors'> Ragav Sachdeva and 
Andrew Zisserman </div> <div class='affil'> University of Oxford </div> </div>""", unsafe_allow_html=True)

path_to_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])

st.sidebar.markdown("**Mode**")
generate_detections_and_associations = st.sidebar.checkbox("Generate detections and associations", True)
generate_transcript = st.sidebar.checkbox("Generate transcript (slower)", False)

# Hyperparameter Sliders
st.sidebar.markdown("**Hyperparameters**")
input_character_detection_threshold = st.sidebar.slider('Character detection threshold', 0.0, 1.0, 0.30, step=0.01)
input_panel_detection_threshold = st.sidebar.slider('Panel detection threshold', 0.0, 1.0, 0.2, step=0.01)
input_text_detection_threshold = st.sidebar.slider('Text detection threshold', 0.0, 1.0, 0.25, step=0.01)
input_character_character_matching_threshold = st.sidebar.slider('Character-character matching threshold', 0.0, 1.0, 0.7, step=0.01)
input_text_character_matching_threshold = st.sidebar.slider('Text-character matching threshold', 0.0, 1.0, 0.4, step=0.01)

# Main processing based on image input
if path_to_image is not None:
    image = read_image_as_np_array(path_to_image)
    st.markdown("**Prediction**")

    # Run predictions based on checkbox selections
    if generate_detections_and_associations:
        result = predict_detections_and_associations(
            path_to_image,
            input_character_detection_threshold,
            input_panel_detection_threshold,
            input_text_detection_threshold,
            input_character_character_matching_threshold,
            input_text_character_matching_threshold,
        )
        output = model.visualise_single_image_prediction(image, result)
        st.image(output)

    if generate_transcript:
        ocr_results = predict_ocr(
            path_to_image,
            input_character_detection_threshold,
            input_panel_detection_threshold,
            input_text_detection_threshold,
            input_character_character_matching_threshold,
            input_text_character_matching_threshold,
        )
        transcript = model.generate_transcript_for_single_image(result, ocr_results[0])
        st.text(transcript)