Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoModel | |
from PIL import Image | |
import torch | |
import numpy as np | |
import urllib.request | |
# Initialize session state for memory if not already | |
if "memory" not in st.session_state: | |
st.session_state.memory = {"characters": {}, "transcript": ""} | |
def load_model(): | |
model = AutoModel.from_pretrained("ragavsachdeva/magi", trust_remote_code=True) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
return model | |
def read_image_as_np_array(image_path): | |
if "http" in image_path: | |
image = Image.open(urllib.request.urlopen(image_path)).convert("L").convert("RGB") | |
else: | |
image = Image.open(image_path).convert("L").convert("RGB") | |
image = np.array(image) | |
return image | |
def predict_detections_and_associations( | |
image_path, | |
character_detection_threshold, | |
panel_detection_threshold, | |
text_detection_threshold, | |
character_character_matching_threshold, | |
text_character_matching_threshold, | |
): | |
image = read_image_as_np_array(image_path) | |
with torch.no_grad(): | |
result = model.predict_detections_and_associations( | |
[image], | |
character_detection_threshold=character_detection_threshold, | |
panel_detection_threshold=panel_detection_threshold, | |
text_detection_threshold=text_detection_threshold, | |
character_character_matching_threshold=character_character_matching_threshold, | |
text_character_matching_threshold=text_character_matching_threshold, | |
)[0] | |
return result | |
def predict_ocr( | |
image_path, | |
character_detection_threshold, | |
panel_detection_threshold, | |
text_detection_threshold, | |
character_character_matching_threshold, | |
text_character_matching_threshold, | |
): | |
if not generate_transcript: | |
return | |
image = read_image_as_np_array(image_path) | |
result = predict_detections_and_associations( | |
image_path, | |
character_detection_threshold, | |
panel_detection_threshold, | |
text_detection_threshold, | |
character_character_matching_threshold, | |
text_character_matching_threshold, | |
) | |
text_bboxes_for_all_images = [result["texts"]] | |
with torch.no_grad(): | |
ocr_results = model.predict_ocr([image], text_bboxes_for_all_images) | |
return ocr_results | |
def clear_memory(): | |
st.session_state.memory = {"characters": {}, "transcript": ""} | |
st.write("Memory cleared.") | |
model = load_model() | |
# Display header and UI components | |
st.markdown(""" <style> ... styles here ... </style> """, unsafe_allow_html=True) | |
path_to_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) | |
# Memory control button | |
st.button("Clear Memory", on_click=clear_memory) | |
st.sidebar.markdown("**Mode**") | |
generate_detections_and_associations = st.sidebar.toggle("Generate detections and associations", True) | |
generate_transcript = st.sidebar.toggle("Generate transcript (slower)", False) | |
st.sidebar.markdown("**Hyperparameters**") | |
input_character_detection_threshold = st.sidebar.slider('Character detection threshold', 0.0, 1.0, 0.30, step=0.01) | |
input_panel_detection_threshold = st.sidebar.slider('Panel detection threshold', 0.0, 1.0, 0.2, step=0.01) | |
input_text_detection_threshold = st.sidebar.slider('Text detection threshold', 0.0, 1.0, 0.25, step=0.01) | |
input_character_character_matching_threshold = st.sidebar.slider('Character-character matching threshold', 0.0, 1.0, 0.7, step=0.01) | |
input_text_character_matching_threshold = st.sidebar.slider('Text-character matching threshold', 0.0, 1.0, 0.4, step=0.01) | |
if path_to_image is not None: | |
image = read_image_as_np_array(path_to_image) | |
st.markdown("**Prediction**") | |
if generate_detections_and_associations or generate_transcript: | |
result = predict_detections_and_associations( | |
path_to_image, | |
input_character_detection_threshold, | |
input_panel_detection_threshold, | |
input_text_detection_threshold, | |
input_character_character_matching_threshold, | |
input_text_character_matching_threshold, | |
) | |
if generate_transcript: | |
ocr_results = predict_ocr( | |
path_to_image, | |
input_character_detection_threshold, | |
input_panel_detection_threshold, | |
input_text_detection_threshold, | |
input_character_character_matching_threshold, | |
input_text_character_matching_threshold, | |
) | |
# Append new characters and transcript to memory | |
if generate_detections_and_associations: | |
output = model.visualise_single_image_prediction(image, result) | |
st.image(output) | |
# Update character memory based on detected characters | |
detected_characters = result.get("characters", {}) | |
st.session_state.memory["characters"].update(detected_characters) | |
# Append the current transcript to the ongoing transcript in memory | |
transcript = model.generate_transcript_for_single_image(result, ocr_results[0]) | |
st.session_state.memory["transcript"] += transcript + "\n" | |
# Display the cumulative transcript from memory | |
st.text(st.session_state.memory["transcript"]) | |
elif generate_detections_and_associations: | |
output = model.visualise_single_image_prediction(image, result) | |
st.image(output) | |
elif generate_transcript: | |
# Display the cumulative transcript | |
st.text(st.session_state.memory["transcript"]) | |