Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,34 +3,37 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
3 |
from peft import PeftModel
|
4 |
import gradio as gr
|
5 |
|
6 |
-
# Step 1:
|
7 |
-
base_model_name = "meta-llama/Llama-3.3-70B-Instruct"
|
8 |
adapter_repo = "daresearch/Llama-3.3-70B-ft-exec-roles"
|
9 |
|
10 |
-
# Step 2: Load the base model
|
11 |
base_model = AutoModelForCausalLM.from_pretrained(
|
12 |
base_model_name,
|
13 |
device_map="auto",
|
14 |
-
torch_dtype=torch.float16,
|
15 |
)
|
16 |
|
17 |
-
# Step
|
18 |
model_with_adapter = PeftModel.from_pretrained(
|
19 |
base_model,
|
20 |
adapter_repo,
|
21 |
device_map="auto",
|
22 |
)
|
|
|
23 |
|
24 |
-
#
|
|
|
|
|
|
|
25 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
26 |
|
27 |
-
# Step
|
28 |
def generate_text(prompt, max_length=1024):
|
29 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to("cuda")
|
30 |
outputs = model_with_adapter.generate(**inputs, max_length=max_length)
|
31 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
32 |
|
33 |
-
# Step
|
34 |
iface = gr.Interface(
|
35 |
fn=generate_text,
|
36 |
inputs=[
|
@@ -42,6 +45,6 @@ iface = gr.Interface(
|
|
42 |
description="Generate text using a LLaMA model with LoRA adapters."
|
43 |
)
|
44 |
|
45 |
-
# Step
|
46 |
if __name__ == "__main__":
|
47 |
iface.launch()
|
|
|
3 |
from peft import PeftModel
|
4 |
import gradio as gr
|
5 |
|
6 |
+
# Step 1: Load base model
|
7 |
+
base_model_name = "meta-llama/Llama-3.3-70B-Instruct"
|
8 |
adapter_repo = "daresearch/Llama-3.3-70B-ft-exec-roles"
|
9 |
|
|
|
10 |
base_model = AutoModelForCausalLM.from_pretrained(
|
11 |
base_model_name,
|
12 |
device_map="auto",
|
13 |
+
torch_dtype=torch.float16,
|
14 |
)
|
15 |
|
16 |
+
# Step 2: Load LoRA adapter
|
17 |
model_with_adapter = PeftModel.from_pretrained(
|
18 |
base_model,
|
19 |
adapter_repo,
|
20 |
device_map="auto",
|
21 |
)
|
22 |
+
print(f"Loaded LoRA adapter from {adapter_repo}")
|
23 |
|
24 |
+
# Verify adapter configuration
|
25 |
+
print(model_with_adapter.config)
|
26 |
+
|
27 |
+
# Step 3: Load tokenizer
|
28 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
29 |
|
30 |
+
# Step 4: Define inference function
|
31 |
def generate_text(prompt, max_length=1024):
|
32 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to("cuda")
|
33 |
outputs = model_with_adapter.generate(**inputs, max_length=max_length)
|
34 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
35 |
|
36 |
+
# Step 5: Create Gradio interface
|
37 |
iface = gr.Interface(
|
38 |
fn=generate_text,
|
39 |
inputs=[
|
|
|
45 |
description="Generate text using a LLaMA model with LoRA adapters."
|
46 |
)
|
47 |
|
48 |
+
# Step 6: Launch Gradio app
|
49 |
if __name__ == "__main__":
|
50 |
iface.launch()
|