Spaces:
Runtime error
Runtime error
import pandas as pd | |
import numpy as np | |
import tensorflow as tf | |
import random | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import MinMaxScaler | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import LSTM, Dense, Dropout | |
from tensorflow.keras.callbacks import EarlyStopping | |
def create_dataset(data, time_step=1): | |
X, y = [], [] | |
for i in range(len(data) - time_step - 1): | |
a = data[i:(i + time_step), :] | |
X.append(a) | |
y.append(data[i + time_step, :]) | |
return np.array(X), np.array(y) | |
def predict_future(model, initial_data, time_step, num_months): | |
predictions = [] | |
current_data = initial_data[-time_step:] | |
for _ in range(num_months * 30): | |
current_data_reshaped = current_data.reshape(1, time_step, current_data.shape[1]) | |
next_prediction = model.predict(current_data_reshaped) | |
predictions.append(next_prediction[0]) | |
current_data = np.append(current_data[1:], next_prediction, axis=0) | |
return np.array(predictions) | |
def generate_plots(file): | |
seed = 65 | |
tf.random.set_seed(seed) | |
np.random.seed(seed) | |
random.seed(seed) | |
# Чтение данных из Excel файла | |
data = pd.read_excel(file) | |
data.dropna(inplace=True) | |
data = data[['EUR_RUB', 'GBP_RUB', 'USD_RUB']] | |
values = data.values | |
scaler = MinMaxScaler() | |
scaled_values = scaler.fit_transform(values) | |
time_step = 30 | |
X, y = create_dataset(scaled_values, time_step) | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42) | |
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], X_train.shape[2]) | |
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], X_test.shape[2]) | |
model = Sequential() | |
model.add(LSTM(256, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2]))) | |
model.add(Dropout(0.3)) | |
model.add(LSTM(128, return_sequences=True)) | |
model.add(Dropout(0.3)) | |
model.add(LSTM(64, return_sequences=False)) | |
model.add(Dropout(0.3)) | |
model.add(Dense(3)) | |
model.compile(optimizer='adam', loss='mean_squared_error') | |
early_stopping = EarlyStopping(monitor='val_loss', patience=15) | |
model.fit(X_train, y_train, epochs=100, batch_size=82, validation_data=(X_test, y_test), callbacks=[early_stopping]) | |
num_months_to_predict = 6 | |
future_predictions = predict_future(model, scaled_values[-time_step:], time_step, num_months_to_predict) | |
future_predictions_rescaled = scaler.inverse_transform(future_predictions) | |
monthly_eur = np.mean(future_predictions_rescaled[:, 0].reshape(-1, 30), axis=1) | |
monthly_gbp = np.mean(future_predictions_rescaled[:, 1].reshape(-1, 30), axis=1) | |
monthly_usd_rub = np.mean(future_predictions_rescaled[:, 2].reshape(-1, 30), axis=1) | |
start_date = pd.to_datetime("30.06.2024", dayfirst=True) # Начальная дата | |
date_range = pd.date_range(start=start_date, periods=len(monthly_eur), freq='ME') | |
plt.figure(figsize=(15, 10)) | |
plt.subplot(3, 1, 1) | |
plt.plot(date_range, monthly_usd_rub, label='Курс Доллара к Рублю', color='red', marker='o') | |
plt.title('Прогноз курса доллара к Рублю на 6 месяцев') | |
plt.xlabel('Месяца') | |
plt.ylabel('Цена Доллара в Рублях') | |
plt.legend() | |
plt.subplot(3, 1, 2) | |
plt.plot(date_range, monthly_eur, label='Курс Евро к Рублю', color='blue', marker='o') | |
plt.title('Прогноз курса Евро к Рублю на 6 месяцев') | |
plt.xlabel('Месяца') | |
plt.ylabel('Цена Евро в Рублях') | |
plt.legend() | |
plt.subplot(3, 1, 3) | |
plt.plot(date_range, monthly_gbp, label='Курс Фунтов Стерлингов к Рублю', color='green', marker='o') | |
plt.title('Прогноз курс Фунтов Стерлингов к Рублю на 6 месяцев') | |
plt.xlabel('Месяца') | |
plt.ylabel('Цена Фунтов Стерлингов в Рублях') | |
plt.legend() | |
plt.tight_layout() | |
plot_file_path = "predictions.png" | |
plt.savefig(plot_file_path) | |
return plot_file_path | |
def get_currency_values(file, date_input): | |
data = pd.read_excel(file) | |
data.dropna(inplace=True) | |
data['Date'] = pd.to_datetime(data['Date'], dayfirst=True) | |
date = pd.to_datetime(date_input, dayfirst=True) | |
row = data[data['Date'] == date] | |
if not row.empty: | |
values = row[['EUR_RUB', 'GBP_RUB', 'USD_RUB']].values.flatten() | |
return f"На {date_input}: USD/RUB: {values[2]}, EUR/RUB: {values[0]}, GBP/RUB: {values[1]}" | |
else: | |
return f"Данные на {date_input} не найдены." | |
app1 = gr.Interface( | |
fn=get_currency_values, | |
inputs=[gr.File(label="Загрузите файл Excel"), gr.Text(label="Введите дату (дд.мм.гггг):")], | |
outputs=gr.Text(label="Результаты валют") | |
) | |
app2 = gr.Interface( | |
fn=generate_plots, | |
inputs=gr.File(label="Загрузите файл Excel"), | |
outputs=gr.Image(type="filepath", label="Графики прогнозов"), | |
) | |
demo = gr.TabbedInterface([app1, app2], ["Вывод цены за дату", "Предсказания на 6 месяцев"]) | |
demo.launch() |