Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -208,16 +208,11 @@ def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_
|
|
208 |
if image is None:
|
209 |
return None, None, None
|
210 |
|
|
|
|
|
211 |
# Apply preprocessing
|
212 |
processed = apply_filters(image, brightness, contrast, hue)
|
213 |
final_image = superimpose_images(processed, overlay_image, alpha)
|
214 |
-
|
215 |
-
# Store the original size
|
216 |
-
original_size = final_image.size
|
217 |
-
|
218 |
-
# Convert to tensor
|
219 |
-
to_tensor = transforms.Compose([transforms.Resize(32), transforms.ToTensor()])
|
220 |
-
# img_tensor_01 = to_tensor(final_image).unsqueeze(0).to(device)
|
221 |
|
222 |
# Generate adversarial if enabled
|
223 |
if adversarial_switch:
|
@@ -226,10 +221,15 @@ def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_
|
|
226 |
orig_pred = torch.argmax(orig_out).item()
|
227 |
adv_tensor_01 = generate_adversarial(final_image, orig_pred)
|
228 |
final_display = transforms.ToPILImage()(adv_tensor_01.squeeze().cpu().detach())
|
229 |
-
|
|
|
230 |
else:
|
231 |
-
|
232 |
-
|
|
|
|
|
|
|
|
|
233 |
|
234 |
# Get predictions
|
235 |
with torch.no_grad():
|
@@ -239,7 +239,7 @@ def predict(image, brightness, contrast, hue, overlay_image, alpha, adversarial_
|
|
239 |
# Generate Grad-CAM
|
240 |
heatmap, _ = gradcam.generate(model_input)
|
241 |
final_np = np.array(final_display)
|
242 |
-
heatmap = cv2.resize(heatmap,
|
243 |
heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
|
244 |
superimposed = cv2.addWeighted(cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB), 0.5, final_np, 0.5, 0)
|
245 |
|
|
|
208 |
if image is None:
|
209 |
return None, None, None
|
210 |
|
211 |
+
orig_size = image.size # Get original size (width, height)
|
212 |
+
|
213 |
# Apply preprocessing
|
214 |
processed = apply_filters(image, brightness, contrast, hue)
|
215 |
final_image = superimpose_images(processed, overlay_image, alpha)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
# Generate adversarial if enabled
|
218 |
if adversarial_switch:
|
|
|
221 |
orig_pred = torch.argmax(orig_out).item()
|
222 |
adv_tensor_01 = generate_adversarial(final_image, orig_pred)
|
223 |
final_display = transforms.ToPILImage()(adv_tensor_01.squeeze().cpu().detach())
|
224 |
+
final_display = final_display.resize(orig_size) # Resize back to original size
|
225 |
+
model_input = transform_image(final_display)
|
226 |
else:
|
227 |
+
# Step 1: Resize to 224x224
|
228 |
+
resized_image = final_image.resize((224, 224))
|
229 |
+
# Step 2: Resize back to original size
|
230 |
+
final_display = resized_image.resize(orig_size)
|
231 |
+
# Model gets the 224x224 resized version
|
232 |
+
model_input = transform_image(resized_image)
|
233 |
|
234 |
# Get predictions
|
235 |
with torch.no_grad():
|
|
|
239 |
# Generate Grad-CAM
|
240 |
heatmap, _ = gradcam.generate(model_input)
|
241 |
final_np = np.array(final_display)
|
242 |
+
heatmap = cv2.resize(heatmap, final_np.shape[:2][::-1])
|
243 |
heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
|
244 |
superimposed = cv2.addWeighted(cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB), 0.5, final_np, 0.5, 0)
|
245 |
|