Spaces:
Sleeping
Sleeping
File size: 1,175 Bytes
f71f174 509ca73 88e7405 10928c5 509ca73 10928c5 509ca73 10928c5 509ca73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
from flask import Flask, request, jsonify
device = "cuda" # the device to load the model onto
from ctransformers import AutoModelForCausalLM
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7b-Chat-GGUF", model_file="llama-2-7b-chat.q4_K_M.gguf", model_type="llama", gpu_layers=0)
@app.route('/recommend', methods=['POST'])
def recommendation():
content = request.json
user_degree = content.get('degree')
user_stream = content.get('stream')
user_semester = content.get('semester')
prompt = """
You need to act like as recommendataion engine for course recommendation based on below details.
Degree: {user_degree}
Stream: {user_stream}
Current Semester: {user_semester}
Based on above details recommend the courses that realtes to above details
Note: Output should bevalid json format in below format:
{{"course1:ABC,course2:DEF,course3:XYZ,...}}
"""
suffix="[/INST]"
prefix="[INST] <<SYS>> You are a helpful assistant <</SYS>>"
prompt = f"{prefix}{user.replace('{prompt}', prompt)}{suffix}"
return jsonify({"ans":llm(prompt)})
if __name__ == '__main__':
app.run(debug=True) |