Spaces:
Sleeping
Sleeping
File size: 2,347 Bytes
f71f174 509ca73 88e7405 10928c5 d0f802a 509ca73 6d8186b 509ca73 25f7cba 7497699 509ca73 c34d039 24c6700 509ca73 10928c5 c34d039 10928c5 509ca73 24c6700 c8c3002 24c6700 25f7cba c34d039 24c6700 25f7cba 24c6700 25f7cba 24c6700 ef1e39e 24c6700 c34d039 24c6700 509ca73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
from flask import Flask, request, jsonify
device = "cuda" # the device to load the model onto
from ctransformers import AutoModelForCausalLM
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Mistral-7B-v0.1-GGUF", model_file="mistral-7b-v0.1.Q4_K_M.gguf", model_type="mistral", gpu_layers=00)
app = Flask(__name__)
file_path = "mentor.txt"
with open(file_path, "r") as file:
mentors_data = file.read()
@app.route('/')
def home():
return jsonify({"message": "Welcome to the Recommendation API!"})
@app.route('/recommend', methods=['POST'])
def recommendation():
content = request.json
user_degree = content.get('degree')
user_stream = content.get('stream')
user_semester = content.get('semester')
prompt = """ prompt:
You need to act like as recommendataion engine for course recommendation for student based on below details.
Degree: {user_degree}
Stream: {user_stream}
Current Semester: {user_semester}
Based on above details recommend the courses that realtes to above details
Note: Output should bevalid json format in below format:
{{"course1:ABC,course2:DEF,course3:XYZ,...}}
"""
suffix="[/INST]"
prefix="[INST] <<SYS>> You are a helpful assistant <</SYS>>"
prompt = f"{prefix}{prompt}{suffix}"
return jsonify({"ans":llm(prompt)})
@app.route('/get_mentor', methods=['POST'])
def mentor():
content = request.json
user_degree = content.get('degree')
user_stream = content.get('stream')
user_semester = content.get('semester')
courses = content.get('courses')
prompt = f""" prompt:
You need to act like as recommendataion engine for mentor recommendation for student based on below details also the list of mentors with their experience is attached.
Degree: {user_degree}
Stream: {user_stream}
Current Semester: {user_semester}
courses opted:{courses}
Mentor list= {mentors_data}
Based on above details recommend the mentor that realtes to above details
Note: Output should be valid json format in below format:
{{"mentor1:ABC,mentor2:DEF,mentor3:XYZ,...}}
"""
suffix="[/INST]"
prefix="[INST] <<SYS>> You are a helpful assistant <</SYS>>"
prompt = f"{prefix}{prompt}{suffix}"
return jsonify({"ans":llm(prompt)})
if __name__ == '__main__':
app.run(debug=True) |