Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torch.nn as nn | |
from transformers import BertModel | |
from transformers import AutoTokenizer | |
from huggingface_hub import hf_hub_download | |
class BiLSTMClassifier(nn.Module): | |
def __init__(self, hidden_dim, output_dim, n_layers, dropout): | |
super(BiLSTMClassifier, self).__init__() | |
self.bert = BertModel.from_pretrained("bert-base-multilingual-cased") | |
self.lstm = nn.LSTM(self.bert.config.hidden_size, hidden_dim, num_layers=n_layers, | |
bidirectional=True, dropout=dropout, batch_first=True) | |
self.fc = nn.Linear(hidden_dim * 2, output_dim) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, input_ids, attention_mask, labels=None): | |
with torch.no_grad(): | |
embedded = self.bert(input_ids=input_ids, attention_mask=attention_mask)[0] | |
lstm_out, _ = self.lstm(embedded) | |
pooled = torch.mean(lstm_out, dim=1) | |
logits = self.fc(self.dropout(pooled)) | |
if labels is not None: | |
loss_fn = nn.CrossEntropyLoss() | |
loss = loss_fn(logits, labels) | |
return {"loss": loss, "logits": logits} # Возвращаем словарь | |
return logits # Возвращаем логиты, если метки не переданы | |
categories = ['climate', 'conflicts', 'culture', 'economy', 'gloss', 'health', | |
'politics', 'science', 'society', 'sports', 'travel'] | |
repo_id = "data-silence/lstm-news-classifier" | |
tokenizer = AutoTokenizer.from_pretrained(repo_id) | |
model_path = hf_hub_download(repo_id=repo_id, filename="model.pth") | |
model = torch.load(model_path) | |
def predict(news: str) -> str: | |
with torch.no_grad(): | |
inputs = tokenizer(news, return_tensors="pt") | |
del inputs['token_type_ids'] | |
output = model.forward(**inputs) | |
id_best_label = torch.argmax(output[0, :], dim=-1).detach().cpu().numpy() | |
prediction = categories[id_best_label] | |
return prediction | |
# Создание интерфейса Gradio | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Textbox(lines=5, label="Enter news text | Введите текст новости"), | |
outputs=[ | |
gr.Label(label="Predicted category | Предсказанная категория"), | |
gr.Label(label="Category probabilities | Вероятности категорий") | |
], | |
title="News Classifier | Классификатор новостей", | |
description="Enter the news text in any language and the model will predict its category. | Введите текст новости на любом языке, и модель предскажет её категорию" | |
) | |
iface.launch() |